3,931 research outputs found
Preventative tele-health supported services for early stage chronic obstructive pulmonary disease: a protocol for a pragmatic randomized controlled trial pilot
Background
Chronic Obstructive Pulmonary Disease (COPD) is a prevalent debilitating long term condition. It is the second most common cause of emergency admission to hospital in the UK and remains one of the most costly conditions to treat through acute care.
Tele-health monitoring offers potential to reduce the rates of re-hospitalisation and emergency department visits and improve quality of life for people with COPD. However, the current evidence base to support technology adoption and implementation is limited and the resource implications for implementing tele-health in practice can be very high. This trial will employ tele-health monitoring in a preventative capacity for patients diagnosed with early stage COPD following discharge from hospital to determine whether it reduces their need for additional health service support or hospital admission and improves their quality of life.
Methods/Design
We describe a pilot study for a two arm, one site randomized controlled trial (RCT) to determine the effect of tele-health monitoring on self-management, quality of life and patient satisfaction. Sixty patients who have been discharged from one acute trust with a primary diagnosis of COPD and who have agreed to receive community clinical support following discharge from acute care will be randomly assigned to one of two groups: (a) Tele-health supported Community COPD Service; or (b) Usual Care. The tele-health supported service involves the patient receiving two home visits with a specialist COPD clinician (nurse or physiotherapist) then participating in daily tele-monitoring over an eight week period. Usual care consists of six home visits to the patient by specialist COPD clinicians again over eight successive weeks. Health status and quality of life data for all participants will be measured at baseline, on discharge from the service and at six months post discharge from the service.
Discussion
The tele-health service under study is a complex service delivered through a collaboration between local authority and health care partners. The implementation of this service demanded significant changes to established working patterns and has been a challenging process requiring considerable planning - a challenge that many providers are likely to face in the future.
Trial registration
Current Controlled Trials ISRCTN6885601
A high-order Godunov scheme for global 3D MHD accretion disks simulations. I. The linear growth regime of the magneto-rotational instability
We employ the PLUTO code for computational astrophysics to assess and compare
the validity of different numerical algorithms on simulations of the
magneto-rotational instability in 3D accretion disks. In particular we stress
on the importance of using a consistent upwind reconstruction of the
electro-motive force (EMF) when using the constrained transport (CT) method to
avoid the onset of numerical instabilities. We show that the electro-motive
force (EMF) reconstruction in the classical constrained transport (CT) method
for Godunov schemes drives a numerical instability. The well-studied linear
growth of magneto-rotational instability (MRI) is used as a benchmark for an
inter-code comparison of PLUTO and ZeusMP. We reproduce the analytical results
for linear MRI growth in 3D global MHD simulations and present a robust and
accurate Godunov code which can be used for 3D accretion disk simulations in
curvilinear coordinate systems
Accretion of low angular momentum material onto black holes: 2D magnetohydrodynamical case
We report on the second phase of our study of slightly rotating accretion
flows onto black holes. We consider magnetohydrodynamical (MHD) accretion flows
with a spherically symmetric density distribution at the outer boundary, but
with spherical symmetry broken by the introduction of a small,
latitude-dependent angular momentum and a weak radial magnetic field. We study
accretion flows by means of numerical 2D, axisymmetric, MHD simulations with
and without resistive heating. Our main result is that the properties of the
accretion flow depend mostly on an equatorial accretion torus which is made of
the material that has too much angular momentum to be accreted directly. The
torus accretes, however, because of the transport of angular momentum due to
the magnetorotational instability (MRI). Initially, accretion is dominated by
the polar funnel, as in the hydrodynamic inviscid case, where material has zero
or very low angular momentum. At the later phase of the evolution, the torus
thickens towards the poles and develops a corona or an outflow or both.
Consequently, the mass accretion through the funnel is stopped. The accretion
of rotating gas through the torus is significantly reduced compared to the
accretion of non-rotating gas (i.e., the Bondi rate). It is also much smaller
than the accretion rate in the inviscid, weakly rotating case.Our results do
not change if we switch on or off resistive heating. Overall our simulations
are very similar to those presented by Stone, Pringle, Hawley and Balbus
despite different initial and outer boundary conditions. Thus, we confirm that
MRI is very robust and controls the nature of radiatively inefficient accretion
flows.Comment: submitted in Ap
Towards a New Standard Model for Black Hole Accretion
We briefly review recent developments in black hole accretion disk theory,
emphasizing the vital role played by magnetohydrodynamic (MHD) stresses in
transporting angular momentum. The apparent universality of accretion-related
outflow phenomena is a strong indicator that large-scale MHD torques facilitate
vertical transport of angular momentum. This leads to an enhanced overall rate
of angular momentum transport and allows accretion of matter to proceed at an
interesting rate. Furthermore, we argue that when vertical transport is
important, the radial structure of the accretion disk is modified at small
radii and this affects the disk emission spectrum. We present a simple model
demonstrating how energetic, magnetically-driven outflows modify the emergent
disk emission spectrum with respect to that predicted by standard accretion
disk theory. A comparison of the predicted spectra against observations of
quasar spectral energy distributions suggests that mass accretion rates
inferred using the standard disk model may severely underestimate their true
values.Comment: To appear in the Fifth Stromlo Symposium Proceedings special issue of
ApS
Multiwavelength observations of a giant flare on CN Leonis I. The chromosphere as seen in the optical spectra
Flares on dM stars contain plasmas at very different temperatures and thus
affect a wide wavelength range in the electromagnetic spectrum. While the
coronal properties of flares are studied best in X-rays, the chromosphere of
the star is observed best in the optical and ultraviolet ranges. Therefore,
multiwavelength observations are essential to study flare properties throughout
the atmosphere of a star. We analysed simultaneous observations with UVES/VLT
and XMM-Newton of the active M5.5 dwarf CN Leo (Gl 406) exhibiting a major
flare. The optical data cover the wavelength range from 3000 to 10000 Angstrom.
From our optical data, we find an enormous wealth of chromospheric emission
lines occurring throughout the spectrum. We identify a total of 1143 emission
lines, out of which 154 are located in the red arm, increasing the number of
observed emission lines in this red wavelength range by about a factor of 10.
Here we present an emission line list and a spectral atlas. We also find line
asymmetries for H I, He I, and Ca II lines. For the last, this is the first
observation of asymmetries due to a stellar flare. During the flare onset,
there is additional flux found in the blue wing, while in the decay phase,
additional flux is found in the red wing. We interpret both features as caused
by mass motions. In addition to the lines, the flare manifests itself in the
enhancement of the continuum throughout the whole spectrum, inverting the
normal slope for the net flare spectrum.Comment: 15 pages, accepted by A&
The Chromospheric Activity and Ages of M Dwarf Stars in Wide Binary Systems
We investigate the relationship between age and chromospheric activity for
139 M dwarf stars in wide binary systems with white dwarf companions. The age
of each system is determined from the cooling age of its white dwarf component.
The current limit for activity-age relations found for M dwarfs in open
clusters is 4 Gyr. Our unique approach to finding ages for M stars allows for
the exploration of this relationship at ages older than 4 Gyr. The general
trend of stars remaining active for a longer time at later spectral type is
confirmed. However, our larger sample and greater age range reveals additional
complexity in assigning age based on activity alone. We find that M dwarfs in
wide binaries older than 4 Gyr depart from the log-linear relation for clusters
and are found to have activity at magnitudes, colors and masses which are
brighter, bluer and more massive than predicted by the cluster relation. In
addition to our activity-age results, we present the measured radial velocities
and complete space motions for 161 white dwarf stars in wide binaries.Comment: 22 pages including 9 figures and 5 tables. Accepted for publication
in The Astronomical Journa
Vortex Glass and Vortex Liquid in Oscillatory Media
We study the disordered, multi-spiral solutions of two-dimensional
homogeneous oscillatory media for parameter values at which the single
spiral/vortex solution is fully stable. In the framework of the complex
Ginzburg-Landau (CGLE) equation, we show that these states, heretofore believed
to be static, actually evolve on ultra-slow timescales. This is achieved via a
reduction of the CGLE to the evolution of the sole vortex position and phase
coordinates. This true defect-mediated turbulence occurs in two distinct
phases, a vortex liquid characterized by normal diffusion of individual
spirals, and a slowly relaxing, intermittent, ``vortex glass''.Comment: 4 pages, 2 figures, submitted to Physical Review Letter
- …