233 research outputs found
A chip-scale integrated cavity-electro-optomechanics platform
We present an integrated optomechanical and electromechanical nanocavity, in
which a common mechanical degree of freedom is coupled to an ultrahigh-Q
photonic crystal defect cavity and an electrical circuit. The sys- tem allows
for wide-range, fast electrical tuning of the optical nanocavity resonances,
and for electrical control of optical radiation pressure back-action effects
such as mechanical amplification (phonon lasing), cooling, and stiffening.
These sort of integrated devices offer a new means to efficiently interconvert
weak microwave and optical signals, and are expected to pave the way for a new
class of micro-sensors utilizing optomechanical back-action for thermal noise
reduction and low-noise optical read-out.Comment: 11 pages, 7 figure
Electromagnetically Induced Transparency and Slow Light with Optomechanics
Controlling the interaction between localized optical and mechanical
excitations has recently become possible following advances in micro- and
nano-fabrication techniques. To date, most experimental studies of
optomechanics have focused on measurement and control of the mechanical
subsystem through its interaction with optics, and have led to the experimental
demonstration of dynamical back-action cooling and optical rigidity of the
mechanical system. Conversely, the optical response of these systems is also
modified in the presence of mechanical interactions, leading to strong
nonlinear effects such as Electromagnetically Induced Transparency (EIT) and
parametric normal-mode splitting. In atomic systems, seminal experiments and
proposals to slow and stop the propagation of light, and their applicability to
modern optical networks, and future quantum networks, have thrust EIT to the
forefront of experimental study during the last two decades. In a similar
fashion, here we use the optomechanical nonlinearity to control the velocity of
light via engineered photon-phonon interactions. Our results demonstrate EIT
and tunable optical delays in a nanoscale optomechanical crystal device,
fabricated by simply etching holes into a thin film of silicon (Si). At low
temperature (8.7 K), we show an optically-tunable delay of 50 ns with
near-unity optical transparency, and superluminal light with a 1.4 microseconds
signal advance. These results, while indicating significant progress towards an
integrated quantum optomechanical memory, are also relevant to classical signal
processing applications. Measurements at room temperature and in the analogous
regime of Electromagnetically Induced Absorption (EIA) show the utility of
these chip-scale optomechanical systems for optical buffering, amplification,
and filtering of microwave-over-optical signals.Comment: 15 pages, 9 figure
Femtogram Doubly Clamped Nanomechanical Resonators Embedded in a High-Q Two-Dimensional Photonic Crystal Nanocavity
We demonstrate a new optomechanical device system which allows highly
efficient transduction of femtogram nanobeam resonators. Doubly clamped
nanomechanical resonators with mass as small as 25 fg are embedded in a
high-finesse two-dimensional photonic crystal nanocavity. Optical transduction
of the fundamental flexural mode around 1 GHz was performed at room temperature
and ambient conditions, with an observed displacement sensitivity of 0.94
fm/Hz^(1/2). Comparison of measurements from symmetric and asymmetric
double-beam devices reveals hybridization of the mechanical modes where the
structural symmetry is shown to be the key to obtain a high mechanical quality
factor. Our novel configuration opens the way for a new category of
"NEMS-in-cavity" devices based on optomechanical interaction at the nanoscale.Comment: Nano Lett. 201
Report from the third international consensus meeting to harmonise core outcome measures for atopic eczema/dermatitis clinical trials (HOME).
This report provides a summary of the third meeting of the Harmonising Outcome Measures for Eczema (HOME) initiative held in San Diego, CA, U.S.A., 6-7 April 2013 (HOME III). The meeting addressed the four domains that had previously been agreed should be measured in every eczema clinical trial: clinical signs, patient-reported symptoms, long-term control and quality of life. Formal presentations and nominal group techniques were used at this working meeting, attended by 56 voting participants (31 of whom were dermatologists). Significant progress was made on the domain of clinical signs. Without reference to any named scales, it was agreed that the intensity and extent of erythema, excoriation, oedema/papulation and lichenification should be included in the core outcome measure for the scale to have content validity. The group then discussed a systematic review of all scales measuring the clinical signs of eczema and their measurement properties, followed by a consensus vote on which scale to recommend for inclusion in the core outcome set. Research into the remaining three domains was presented, followed by discussions. The symptoms group and quality of life groups need to systematically identify all available tools and rate the quality of the tools. A definition of long-term control is needed before progress can be made towards recommending a core outcome measure
Coherent coupling between radio frequency, optical, and acoustic waves in piezo-optomechanical circuits
The interaction of optical and mechanical modes in nanoscale optomechanical
systems has been widely studied for applications ranging from sensing to
quantum information science. Here, we develop a platform for cavity
optomechanical circuits in which localized and interacting 1550 nm photons and
2.4 GHz phonons are combined with photonic and phononic waveguides. Working in
GaAs facilitates manipulation of the localized mechanical mode either with a
radio frequency field through the piezo-electric effect, or optically through
the strong photoelastic effect. We use this to demonstrate a novel acoustic
wave interference effect, analogous to coherent population trapping in atomic
systems, in which the coherent mechanical motion induced by the electrical
drive can be completely cancelled out by the optically-driven motion. The
ability to manipulate cavity optomechanical systems with equal facility through
either photonic or phononic channels enables new device and system
architectures for signal transduction between the optical, electrical, and
mechanical domains
Generalized nonreciprocity in an optomechanical circuit via synthetic magnetism and reservoir engineering
Synthetic magnetism has been used to control charge neutral excitations for
applications ranging from classical beam steering to quantum simulation. In
optomechanics, radiation-pressure-induced parametric coupling between optical
(photon) and mechanical (phonon) excitations may be used to break time-reversal
symmetry, providing the prerequisite for synthetic magnetism. Here we design
and fabricate a silicon optomechanical circuit with both optical and mechanical
connectivity between two optomechanical cavities. Driving the two cavities with
phase-correlated laser light results in a synthetic magnetic flux, which in
combination with dissipative coupling to the mechanical bath, leads to
nonreciprocal transport of photons with 35dB of isolation. Additionally,
optical pumping with blue-detuned light manifests as a particle non-conserving
interaction between photons and phonons, resulting in directional optical
amplification of 12dB in the isolator through direction. These results indicate
the feasibility of utilizing optomechanical circuits to create a more general
class of nonreciprocal optical devices, and further, to enable novel
topological phases for both light and sound on a microchip.Comment: 18 pages, 8 figures, 4 appendice
International Consensus Conference on Atopic Dermatitis II (ICCAD II * ): clinical update and current treatment strategies
Peer Reviewedhttp://deepblue.lib.umich.edu/bitstream/2027.42/74915/1/j.1365-2133.148.s63.1.x.pd
Minimization of phonon-tunneling dissipation in mechanical resonators
Micro- and nanoscale mechanical resonators have recently emerged as
ubiquitous devices for use in advanced technological applications, for example
in mobile communications and inertial sensors, and as novel tools for
fundamental scientific endeavors. Their performance is in many cases limited by
the deleterious effects of mechanical damping. Here, we report a significant
advancement towards understanding and controlling support-induced losses in
generic mechanical resonators. We begin by introducing an efficient numerical
solver, based on the "phonon-tunneling" approach, capable of predicting the
design-limited damping of high-quality mechanical resonators. Further, through
careful device engineering, we isolate support-induced losses and perform the
first rigorous experimental test of the strong geometric dependence of this
loss mechanism. Our results are in excellent agreement with theory,
demonstrating the predictive power of our approach. In combination with recent
progress on complementary dissipation mechanisms, our phonon-tunneling solver
represents a major step towards accurate prediction of the mechanical quality
factor.Comment: 12 pages, 4 figure
- …