222 research outputs found

    Vortex instability in molybdenum-germanium superconducting films

    Full text link
    We studied the high driving force regime of the current-voltage transport response in the mixed state of amorphous molybdenum-germanium superconducting films to the point where the flux flow becomes unstable. The observed nonlinear response conforms with the classic Larkin-Ovchinikov (LO) picture with a quasiparticle-energy-relaxation rate dominated by the quasiparticle recombination process. The measured energy relaxation rate was found to have a magnitude and temperature dependence in agreement with theory. PACS: 74.40.Gh, 74.25.Uv, 72.15.Lh, 73.50.Gr, 73.50.Fq Keywords: fluxon, vortices, TDGL, FFF, negative differential conductivity, NDC, non-monotonic IV curveComment: 5 pages, 3 figure

    Evaluating free flux flow in low-pinning molybdenum-germanium superconducting films

    Full text link
    Vortex dynamics in molybdenum-germanium superconducting films were found to well approximate the unpinned free limit even at low driving forces. This provided an opportunity to empirically establish the intrinsic character of free flux flow and to test in detail the validity of theories for this regime beyond the Bardeen-Stephen approximation. Our observations are in good agreement with the mean-field result of time dependent Ginzburg-Landau theory. PACS: 74.25.Sv,74.25.Wx,74.25.Uv,74.25.Op,74.25.F- Keywords: vortices, fluxon, Larkin, Ovchinnikov, upper critical magnetic fieldComment: This is the final revised version of a paper that is currently in press. It is expected to appear in Phys. Rev. B in 201

    Optical conductivity of a granular metal at not very low temperatures

    Full text link
    We study the finite-temperature optical conductivity, sigma(omega,T), of a granular metal using a simple model consisting of a array of spherical metallic grains. It is necessary to include quantum tunneling and Coulomb blockade effects to obtain the correct temperature dependence of sigma(omega, T), and to consider polarization oscillations to obtain the correct frequency dependence. We have therefore generalized the Ambegaokar-Eckern-Schoen (AES) model for granular metals to obtain an effective field theory incorporating the polarization fluctuations of the individual metallic grains. In contrast to the DC conductivity, which is determined by inter-grain charge transfer and obeys an Arrhenius law at low temperature, the AC conductivity is dominated by a resonance peak for intra-grain polarization oscillations, which has a power-law tail at low frequencies. More importantly, although the resonance frequency agrees with the classical prediction, the resonance width depends on intergrain quantum tunneling and Coulomb blockade parameters, in addition to the classical Drude relaxation within the grain. This additional damping is due to inelastic cotunneling of polarization fluctuations to neighbouring grains and it qualitatively differs from the DC conductivity in its temperature dependence quite unlike the expectation from Drude theory.Comment: Added figures, published version, 16 pages, REVTe

    Conductance of Aharonov--Bohm Rings: From the Discrete to the Continuous Spectrum Limit

    Full text link
    The dissipative conductance of an array of mesoscopic rings, subject to an a.c. magnetic flux is investigated. The magneto--conductance may change sign between canonical and grand-canonical statistical ensembles, as function of the inelastic level broadening and as function of the temperature. Differences between canonical and grand-canonical ensembles persist up to temperature of the order of the Thouless energy.Comment: 13 pages, 2 figures, REVTeX v2.1, WIS--93/121/Dec.--P

    Finite Temperature Phase Diagram of Quasi-Two-Dimensional Imbalanced Fermi Gases Beyond Mean-Field

    Full text link
    We investigate the superfluid transition temperature of quasi-two-dimensional imbalanced Fermi gases beyond the mean-field approximation, through the second-order (or induced) interaction effects. For a balanced Fermi system the transition temperature is suppressed by a factor 2.72\approx 2.72. For imbalanced Fermi systems, the polarization and transition temperature of the tricritical point are significantly reduced as the two-body binding energy ϵB|\epsilon_B| increases.Comment: 6 pages, 3 figure

    Interaction correction to the conductance of a ballistic conductor

    Full text link
    In disordered metals, electron-electron interactions are the origin of a small correction to the conductivity, the "Altshuler-Aronov correction". Here we investigate the Altshuler-Aronov correction of a conductor in which the electron motion is ballistic and chaotic. We consider the case of a double quantum dot, which is the simplest example of a ballistic conductor in which the Altshuler-Aronov correction is nonzero. The fact that the electron motion is ballistic leads to an exponential suppression of the correction if the Ehrenfest time is larger than the mean dwell time or the inverse temperature.Comment: 4 pages, 2 figure

    Electron transport in disordered graphene

    Full text link
    We study electron transport properties of a monoatomic graphite layer (graphene) with different types of disorder. We show that the transport properties of the system depend strongly on the character of disorder. Away from half filling, the concentration dependence of conductivity is linear in the case of strong scatterers, in line with recent experimental observations, and logarithmic for weak scatterers. At half filling the conductivity is of the order of e^2/h if the randomness preserves one of the chiral symmetries of the clean Hamiltonian; otherwise, the conductivity is strongly affected by localization effects.Comment: 21 pages, 9 figure

    From Trapped Atoms to Liberated Quarks

    Get PDF
    We discuss some aspects of cold atomic gases in the unitarity limit that are of interest in connection with the physics of dense hadronic matter. We consider, in particular, the equation of state at zero temperature, the magnitude of the pairing gap, and the phase diagram at non-zero polarization.Comment: 13 pages, 5 figures; to appear in the proceedings of the International Symposium on Heavy Ion Physics 2006, Frankfurt, Germany; International Journal of Modern Physics E, in pres

    Ehrenfest time in the weak dynamical localization

    Full text link
    The quantum kicked rotor (QKR) is known to exhibit dynamical localization in the space of its angular momentum. The present paper is devoted to the systematic first--principal (without a regularizer) diagrammatic calculations of the weak--localization corrections for QKR. Our particular emphasis is on the Ehrenfest time regime -- the phenomena characteristic for the classical--to--quantum crossover of classically chaotic systems.Comment: 27 pages, 9 figure

    Universal Conductance Distribution in the Quantum Size Regime

    Full text link
    We study the conductance (g) distribution function of an ensemble of isolated conducting rings, with an Aharonov--Bohm flux. This is done in the discrete spectrum limit, i.e., when the inelastic rate, frequency and temperature are all smaller than the mean level spacing. Over a wide range of g the distribution function exhibits universal behavior P(g)\sim g^{-(4+\beta)/3}, where \beta=1 (2) for systems with (without) a time reversal symmetry. The nonuniversal large g tail of this distribution determines the values of high moments.Comment: 13 pages+1 figure, RevTEX
    corecore