1,150 research outputs found

    Cosmological Neutrino Background Revisited

    Full text link
    We solve the Boltzmann equation for cosmological neutrinos around the epoch of the electron-positron annihilation in order to verify the freeze-out approximation and to compute accurately the cosmological neutrino distribution function. We find the radiation energy density to be about 0.3% higher than the one predicted by the freeze-out approximation. As a result, the spectrum of the Cosmic Microwave Background anisotropies changes by 0.3-05%, depending on the angular scale, and the amplitude of the mass fluctuations on scales below about 100 h^{-1} Mpc decreases by about 0.2-0.3%.Comment: An error is corrected, figure revised; submitted to Ap

    Guess the Larger Number

    Get PDF
    We discuss variations of the zero-sum game where Bob selects two distinct numbers, and Alice learns one of them to make a guess which of the numbers is the larger

    Star Formation in a Cosmological Simulation of Reionization

    Get PDF
    We study the luminosity functions of high-redshift galaxies in detailed hydrodynamic simulations of cosmic reionization, which are designed to reproduce the evolution of the Lyman-alpha forest between z=5 and z=6. We find that the luminosity functions and total stellar mass densities are in agreement with observations when plausible assumptions about reddenning at z=6 are made. Our simulations support the conclusion that stars alone reionized the universe.Comment: Accepted for publication in Ap
    corecore