764 research outputs found

    Human dendritic cell sequestration onto the Necator americanus larval sheath during ex-sheathing: a possible mechanism for immune privilege

    Get PDF
    Despite the profound health implications of Necator americanus (N. americanus) infection in humans, many aspects of its interaction with the host immune system are poorly understood. Here we investigated the early events at the interface of N. americanus larvae (L3) and human dendritic cells (DCs). Our data show that co-culturing DCs and the larvae triggers ex-sheathing of hookworms rapidly where a majority of DCs are sequestered onto the larval sheath allowing the ex-sheathed larvae to migrate away unchallenged. Intriguingly, DCs show negligible interaction with the ex-sheathed larvae, alluding to differences between the surface chemistry of the larva and its sheath. Furthermore, blocking of two key C-type lectin receptors on DC surface (i.e. DC-SIGN and mannose receptor) resulted in inhibition of ex-sheathing process and DC sequestration, highlighting the importance of C-type lectins on DCs in the induction of the ex-sheathing. Analyses of DC phenotype and cytokine profile after co-culture with the N. americanus larvae showed an immature phenotype as evidenced by the low expression of the maturation markers and cytokines. These data provide new insights into early events at the interface of human DCs and N. americanus larvae and could explain how L3 evade immune recognition upon initial interaction with DCs

    Developing immune-regulatory materials using immobilized monosaccharides with immune-instructive properties

    Get PDF
    New strategies for immune modulation have shown real promise in regenerative medicine as well as the fight against autoimmune diseases, allergies and cancer. Dendritic cells (DCs) are gatekeepers of the immune system and their ability in shaping the adaptive immune responses makes DCs ideal targets for immune modulation. Carbohydrates are abundant in different biological systems and are known to modulate DC phenotype and function. However, how simple monosaccharides instruct DC function is less well understood. In this study we used a combinatorial array of immobilized monosaccharides to investigate how they modulate DC phenotype and function, and crucially the impact of such changes on downstream adaptive immune responses. Our data show a selection of monosaccharides significantly suppress lipopolysaccharide (LPS) induced DC activation as evidenced by reduction in CD40 expression, IL-12 production and 2,3 indoleamine dioxygenase activity, while inducing a significant increase in IL-10 production. These changes are indicative of induction of an anti-inflammatory or regulatory phenotype in DCs which was further confirmed in DC-T cell co-cultures where DCs cultured on the ‘regulatory’ monosaccharaide coated surfaces were shown to induce naïve T cell polarization towards regulatory phenotype. Our data also highlighted a selection of monosaccharides that are able to promote mixed Treg and Th17 cell differentiation, a T cell phenotype expected to be highly immune suppressive. These data show the potential immunomodulatory effects of immobilized monosaccharides in priming DCs and skewing T cell differentiation towards an immune-regulatory phenotype. The ability to fine tune immune responses using these simple carbohydrate combinations (e.g. as coatings for existing materials) can be utilized as novel tools for immune modulation with potential applications in regenerative medicine, implantable medical devices and wound healing where reduction of inflammatory responses and maintaining immune homeostasis are desirable

    Morphological and molecular identification of brown algae, Padina sp. in Lengeh Port, Persian Gulf

    Get PDF
    Brown algae, Padina sp., are found across tropical coastal areas as well as inter-tidal and sub-tidal regions. The aim of this research was to identify the morphological and molecular characteristics of the Padina species distributed across Port Lengeh in the Persian Gulf using morphological examinations and rbcL chloroplast gene sequencing. For this purpose, morphological features were undertaken using valid identification keys. For the molecular analysis, genomic DNA was extracted through slightly modified CTAB. The amplification of fragments was carried out using rbcL primers. The analysis of genome sequences was undertaken using Chromas, BioEdit and MEGA6 and the phylogenetic trees were constructed through Neighbor Joining (NJ) and Maximum Likelihood (ML). The results indicated that there was a 99% chance that the two identified Padina species (P. boergessenii and P. australis) belonged to the same cluster and that there were large genetic similarities among the compared Padina species registered in GenBank

    Why highly expressed proteins evolve slowly

    Get PDF
    Much recent work has explored molecular and population-genetic constraints on the rate of protein sequence evolution. The best predictor of evolutionary rate is expression level, for reasons which have remained unexplained. Here, we hypothesize that selection to reduce the burden of protein misfolding will favor protein sequences with increased robustness to translational missense errors. Pressure for translational robustness increases with expression level and constrains sequence evolution. Using several sequenced yeast genomes, global expression and protein abundance data, and sets of paralogs traceable to an ancient whole-genome duplication in yeast, we rule out several confounding effects and show that expression level explains roughly half the variation in Saccharomyces cerevisiae protein evolutionary rates. We examine causes for expression's dominant role and find that genome-wide tests favor the translational robustness explanation over existing hypotheses that invoke constraints on function or translational efficiency. Our results suggest that proteins evolve at rates largely unrelated to their functions, and can explain why highly expressed proteins evolve slowly across the tree of life.Comment: 40 pages, 3 figures, with supporting informatio

    JNK modifies neuronal metabolism to promote proteostasis and longevity.

    Get PDF
    Aging is associated with a progressive loss of tissue and metabolic homeostasis. This loss can be delayed by single-gene perturbations, increasing lifespan. How such perturbations affect metabolic and proteostatic networks to extend lifespan remains unclear. Here, we address this question by comprehensively characterizing age-related changes in protein turnover rates in the Drosophila brain, as well as changes in the neuronal metabolome, transcriptome, and carbon flux in long-lived animals with elevated Jun-N-terminal Kinase signaling. We find that these animals exhibit a delayed age-related decline in protein turnover rates, as well as decreased steady-state neuronal glucose-6-phosphate levels and elevated carbon flux into the pentose phosphate pathway due to the induction of glucose-6-phosphate dehydrogenase (G6PD). Over-expressing G6PD in neurons is sufficient to phenocopy these metabolic and proteostatic changes, as well as extend lifespan. Our study identifies a link between metabolic changes and improved proteostasis in neurons that contributes to the lifespan extension in long-lived mutants

    Metabolic Signatures of Surface-Modified Poly(lactic- co-glycolic acid) Nanoparticles in Differentiated THP-1 Cells Derived with Liquid Chromatography-Mass Spectrometry-based Metabolomics

    Get PDF
    Polymeric nanoparticles (NPs) are widely used in preclinical drug delivery investigations, and some formulations are now in the clinic. However, the detailed effects of many NPs at the subcellular level have not been fully investigated. In this study, we used differentiated THP-1 macrophage cells, as a model, to investigate the metabolic changes associated with the use of poly (lactic-co-glycolic acid) (PLGA) NPs with different surface coating or conjugation chemistries. Liquid chromatography-mass spectrometry-based metabolic profiling was performed on the extracts (n = 6) of the differentiated THP-1 cells treated with plain, Pluronic (F-127, F-68, and P-85)-coated and PEG-PLGA NPs and control (no treatment). Principal component analysis and orthogonal partial least squares-discriminant analysis (OPLS-DA) in conjunction with univariate and pathway analyses were performed to identify significantly changed metabolites and pathways related to exposure of the cells to NPs. OPLS-DA of each class in the study compared to the control showed clear separation and clustering with cross-validation values of R2 and Q2 > 0.5. A total of 105 metabolites and lipids were found to be significantly altered in the differentiated THP-1 cell profiles due to the NP exposure, whereas more than 20 metabolic pathways were found to be affected. These pathways included glycerophospholipid, sphingolipid, linoleic acid, arginine and proline, and alpha-linolenic acid metabolisms. PLGA NPs were found to perturb some amino acid metabolic pathways and altered membrane lipids to a different degree. The metabolic effect of the PLGA NPs on the cells were comparable to those caused by silver oxide NPs and other inorganic nanomaterials. However, PEG-PLGA NPs demonstrated a reduced impact on the cellular metabolism compared to Pluronic copolymer-coated PLGA and plain PLGA NPs

    Anti-prion drug mPPIg5 inhibits PrP(C) conversion to PrP(Sc).

    Get PDF
    Prion diseases, also known as transmissible spongiform encephalopathies, are a group of fatal neurodegenerative diseases that include scrapie in sheep, bovine spongiform encephalopathy (BSE) in cattle and Creutzfeldt-Jakob disease (CJD) in humans. The 'protein only hypothesis' advocates that PrP(Sc), an abnormal isoform of the cellular protein PrP(C), is the main and possibly sole component of prion infectious agents. Currently, no effective therapy exists for these diseases at the symptomatic phase for either humans or animals, though a number of compounds have demonstrated the ability to eliminate PrPSc in cell culture models. Of particular interest are synthetic polymers known as dendrimers which possess the unique ability to eliminate PrP(Sc) in both an intracellular and in vitro setting. The efficacy and mode of action of the novel anti-prion dendrimer mPPIg5 was investigated through the creation of a number of innovative bio-assays based upon the scrapie cell assay. These assays were used to demonstrate that mPPIg5 is a highly effective anti-prion drug which acts, at least in part, through the inhibition of PrP(C) to PrP(Sc) conversion. Understanding how a drug works is a vital component in maximising its performance. By establishing the efficacy and method of action of mPPIg5, this study will help determine which drugs are most likely to enhance this effect and also aid the design of dendrimers with anti-prion capabilities for the future

    The interplay of intrinsic and extrinsic bounded noises in genetic networks

    Get PDF
    After being considered as a nuisance to be filtered out, it became recently clear that biochemical noise plays a complex role, often fully functional, for a genetic network. The influence of intrinsic and extrinsic noises on genetic networks has intensively been investigated in last ten years, though contributions on the co-presence of both are sparse. Extrinsic noise is usually modeled as an unbounded white or colored gaussian stochastic process, even though realistic stochastic perturbations are clearly bounded. In this paper we consider Gillespie-like stochastic models of nonlinear networks, i.e. the intrinsic noise, where the model jump rates are affected by colored bounded extrinsic noises synthesized by a suitable biochemical state-dependent Langevin system. These systems are described by a master equation, and a simulation algorithm to analyze them is derived. This new modeling paradigm should enlarge the class of systems amenable at modeling. We investigated the influence of both amplitude and autocorrelation time of a extrinsic Sine-Wiener noise on: (i)(i) the Michaelis-Menten approximation of noisy enzymatic reactions, which we show to be applicable also in co-presence of both intrinsic and extrinsic noise, (ii)(ii) a model of enzymatic futile cycle and (iii)(iii) a genetic toggle switch. In (ii)(ii) and (iii)(iii) we show that the presence of a bounded extrinsic noise induces qualitative modifications in the probability densities of the involved chemicals, where new modes emerge, thus suggesting the possibile functional role of bounded noises

    Achieving Microparticles with Cell-Instructive Surface Chemistry by Using Tunable Co-Polymer Surfactants

    Get PDF
    © 2020 The Authors. Published by WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim A flow-focusing microfluidic device is used to produce functionalized monodisperse polymer particles with surface chemistries designed to control bacterial biofilm formation. This is achieved by using molecularly designed bespoke surfactants synthesized via catalytic chain transfer polymerization. This novel approach of using polymeric surfactants, often called surfmers, containing a biofunctional moiety contrasts with the more commonly employed emulsion methods. Typically, the surface chemistry of microparticles are dominated by unwanted surfactants that dilute/mask the desired surface response. Time of flight secondary ion mass spectrometry (ToF-SIMS) analysis of particles demonstrates that the comb-graft surfactant is located on the particle surface. Biofilm experiments show how specifically engineered surface chemistries, generated by the surfactants, successfully modulate bacterial attachment to both polymer films, and microparticles. Thus, this paper outlines how the use of designed polymeric surfactants and droplet microfluidics can exert control over both the surface chemistry and size distribution of microparticle materials, demonstrating their critical importance for controlling surface-cell response

    Role of exosomes in malignant glioma: microRNAs and proteins in pathogenesis and diagnosis

    Get PDF
    Malignant gliomas are the most common and deadly type of central nervous system tumors. Despite some advances in treatment, the mean survival time remains only about 1.25 years. Even after surgery, radiotherapy and chemotherapy, gliomas still have a poor prognosis. Exosomes are the most common type of extracellular vesicles with a size range of 30 to 100 nm, and can act as carriers of proteins, RNAs, and other bioactive molecules. Exosomes play a key role in tumorigenesis and resistance to chemotherapy or radiation. Recent evidence has shown that exosomal microRNAs (miRNAs) can be detected in the extracellular microenvironment, and can also be transferred from cell to cell via exosome secretion and uptake. Therefore, many recent studies have focused on exosomal miRNAs as important cellular regulators in various physiological and pathological conditions. A variety of exosomal miRNAs have been implicated in the initiation and progression of gliomas, by activating and/or inhibiting different signaling pathways. Exosomal miRNAs could be used as therapeutic agents to modulate different biological processes in gliomas. Exosomal miRNAs derived from mesenchymal stem cells could also be used for glioma treatment. The present review summarizes the exosomal miRNAs that have been implicated in the pathogenesis, diagnosis and treatment of gliomas. Moreover, exosomal proteins could also be involved in glioma pathogenesis. Exosomal miRNAs and proteins could also serve as non-invasive biomarkers for prognosis and disease monitoring. Video Abstract
    corecore