90 research outputs found
An Algorithmic Framework for Labeling Road Maps
Given an unlabeled road map, we consider, from an algorithmic perspective,
the cartographic problem to place non-overlapping road labels embedded in their
roads. We first decompose the road network into logically coherent road
sections, e.g., parts of roads between two junctions. Based on this
decomposition, we present and implement a new and versatile framework for
placing labels in road maps such that the number of labeled road sections is
maximized. In an experimental evaluation with road maps of 11 major cities we
show that our proposed labeling algorithm is both fast in practice and that it
reaches near-optimal solution quality, where optimal solutions are obtained by
mixed-integer linear programming. In comparison to the standard OpenStreetMap
renderer Mapnik, our algorithm labels 31% more road sections in average.Comment: extended version of a paper to appear at GIScience 201
Placing Arrows in Directed Graph Drawings
We consider the problem of placing arrow heads in directed graph drawings
without them overlapping other drawn objects. This gives drawings where edge
directions can be deduced unambiguously. We show hardness of the problem,
present exact and heuristic algorithms, and report on a practical study.Comment: Appears in the Proceedings of the 24th International Symposium on
Graph Drawing and Network Visualization (GD 2016
Evaluation of Labeling Strategies for Rotating Maps
We consider the following problem of labeling points in a dynamic map that
allows rotation. We are given a set of points in the plane labeled by a set of
mutually disjoint labels, where each label is an axis-aligned rectangle
attached with one corner to its respective point. We require that each label
remains horizontally aligned during the map rotation and our goal is to find a
set of mutually non-overlapping active labels for every rotation angle so that the number of active labels over a full map rotation of
2 is maximized. We discuss and experimentally evaluate several labeling
models that define additional consistency constraints on label activities in
order to reduce flickering effects during monotone map rotation. We introduce
three heuristic algorithms and compare them experimentally to an existing
approximation algorithm and exact solutions obtained from an integer linear
program. Our results show that on the one hand low flickering can be achieved
at the expense of only a small reduction in the objective value, and that on
the other hand the proposed heuristics achieve a high labeling quality
significantly faster than the other methods.Comment: 16 pages, extended version of a SEA 2014 pape
Trajectory-Based Dynamic Map Labeling
In this paper we introduce trajectory-based labeling, a new variant of
dynamic map labeling, where a movement trajectory for the map viewport is
given. We define a general labeling model and study the active range
maximization problem in this model. The problem is NP-complete and W[1]-hard.
In the restricted, yet practically relevant case that no more than k labels can
be active at any time, we give polynomial-time algorithms. For the general case
we present a practical ILP formulation with an experimental evaluation as well
as approximation algorithms.Comment: 19 pages, 7 figures, extended version of a paper to appear at ISAAC
201
Optimal Time-Convex Hull under the Lp Metrics
We consider the problem of computing the time-convex hull of a point set
under the general metric in the presence of a straight-line highway in
the plane. The traveling speed along the highway is assumed to be faster than
that off the highway, and the shortest time-path between a distant pair may
involve traveling along the highway. The time-convex hull of a point
set is the smallest set containing both and \emph{all} shortest
time-paths between any two points in . In this paper we give an
algorithm that computes the time-convex hull under the metric in optimal
time for a given set of points and a real number with
- …