1,191 research outputs found

    Gas flows through shallow T-junctions and parallel microchannel networks

    Get PDF
    We apply a recent extension of the Hele-Shaw scheme to analyze steady compressible viscous flows through micro T-junctions. The linearity of the problem in terms of an appropriately defined quadratic form of the pressure facilitates the definition of the viscous resistance of the configuration, relating the gas mass-flow rate to entrance and exit conditions. Furthermore, under rather mild restrictions, the performance of complex microchannel networks may be estimated through superposition of the contributions of multiple basic junction elements. This procedure is applied to an optimization model problem of a parallel microchannel network. The analysis and results are readily adaptable to incompressible flows

    Elasto-capillary coalescence of multiple parallel sheets

    Get PDF
    We analyse two-dimensional clamped parallel elastic sheets which are partially immersed in liquid as a model for elasto-capillary coalescence. In the existing literature this problem is studied via minimal energy analysis of capillary and elastic energies of the post-coalescence state, yielding the maximal stable post-coalescence bundle size. Utilizing modal stability analysis and asymptotic analysis, we studied the stability of the configuration before the coalescence occurred. Our analysis revealed previously unreported relations between viscous forces, body forces, and the instability yielding the coalescence, thus undermining a common assumption that coalescence will occur as long as it will not create a bundle larger than the maximal stable post-coalesced size. A mathematical description of the process creating the hierarchical coalescence structure was obtained and yielded that the mean number of sheets per coalesced region is limited to the subset 2^N where N is the set of natural numbers. Our theoretical results were illustrated by experiments and good agreement with the theoretical predictions was observed

    A comparison between pulsed and CW laser annealing for solar cell applications

    Get PDF
    The application of laser processing in solar cell fabrication is considered. Specific emphasis is placed on a process developed for the fabrication of a 16.6% silicon solar cell using pulsed laser processing. Results are presented which compare pulsed laser annealing with CW laser annealing in solar cell fabrication

    Elasto-capillary coalescence of multiple parallel sheets

    Full text link

    GRB afterglow blast wave encountering sudden circumburst density change produces no flares

    Get PDF
    Afterglows of gamma-ray bursts are observed to produce light curveswith the flux following power law evolution in time. However, recent observations reveal bright flares at times on the order of minutes to days.One proposed explanation for these flares is the interaction of a relativisticblast wave with a circumburst density transition. In this paper, we modelthis type of interaction computationally in one and two dimensions, usinga relativistic hydrodynamics code with adaptive mesh refinement calledram, and analytically in one dimension. We simulate a blast wave travelingin a stellar wind environment that encounters a sudden change indensity, followed by a homogeneous medium, and compute the observedradiation using a synchrotron model. We show that flares are not observablefor an encounter with a sudden density increase, such as a windtermination shock, nor for an encounter with a sudden density decrease.Furthermore, by extending our analysis to two dimensions, we are able toresolve the spreading, collimation, and edge effects of the blast wave as itencounters the change in circumburst medium. In all cases considered inthis paper, we find that a flare will not be observed for any of the densitychanges studied

    MORPH: A Reference Architecture for Configuration and Behaviour Self-Adaptation

    Full text link
    An architectural approach to self-adaptive systems involves runtime change of system configuration (i.e., the system's components, their bindings and operational parameters) and behaviour update (i.e., component orchestration). Thus, dynamic reconfiguration and discrete event control theory are at the heart of architectural adaptation. Although controlling configuration and behaviour at runtime has been discussed and applied to architectural adaptation, architectures for self-adaptive systems often compound these two aspects reducing the potential for adaptability. In this paper we propose a reference architecture that allows for coordinated yet transparent and independent adaptation of system configuration and behaviour

    Gaslike model of social motility

    Full text link
    We propose a model to represent the motility of social elements. The model is completely deterministic, possesses a small number of parameters, and exhibits a series of properties that are reminiscent of the behavior of comunities in social-ecological competition; these are: (i) similar individuals attract each other; (ii) individuals can form stable groups; (iii) a group of similar individuals breaks into subgroups if it reaches a critical size; (iv) interaction between groups can modify the distribution of the elements as a result of fusion, fission, or pursuit; (v) individuals can change their internal state by interaction with their neighbors. The simplicity of the model and its richness of emergent behaviors, such as, for example, pursuit between groups, make it a useful toy model to explore a diversity of situations by changing the rule by which the internal state of individuals is modified by the interactions with the environment.Comment: 11 pages, 4 figures, accepted in PR

    A frictionless microswimmer

    Get PDF
    We investigate the self-locomotion of an elongated microswimmer by virtue of the unidirectional tangential surface treadmilling. We show that the propulsion could be almost frictionless, as the microswimmer is propelled forward with the speed of the backward surface motion, i.e. it moves throughout an almost quiescent fluid. We investigate this swimming technique using the special spheroidal coordinates and also find an explicit closed-form optimal solution for a two-dimensional treadmiler via complex-variable techniques.Comment: 6 pages, 4 figure
    corecore