8,031 research outputs found

    Time-Reversal Symmetry Breaking and Decoherence in Chaotic Dirac Billiards

    Full text link
    In this work, we perform a statistical study on Dirac Billiards in the extreme quantum limit (a single open channel on the leads). Our numerical analysis uses a large ensemble of random matrices and demonstrates the preponderant role of dephasing mechanisms in such chaotic billiards. Physical implementations of these billiards range from quantum dots of graphene to topological insulators structures. We show, in particular, that the role of finite crossover fields between the universal symmetries quickly leaves the conductance to the asymptotic limit of unitary ensembles. Furthermore, we show that the dephasing mechanisms strikingly lead Dirac billiards from the extreme quantum regime to the semiclassical Gaussian regime

    Crossover of thermal to shot noise in chaotic cavities

    Full text link
    We study the crossover between thermal and shot-noise power in a chaotic quantum dot in the presence of non-ideal contacts at finite temperature. The result explicitly demonstrates that the temperature affect the suppression-amplification effect present in the main quantum noise. In particular, the weak localization contribution to the noise has an anomalous thermal behavior when one let the barriers vary, indicating the presence of a critical point related to specific value of the tunneling barriers. We also show how to get to the opaque limit of the quantum dot at finite temperature.Comment: 6 pages, 5 figures. To be published in Europhysics Letter

    Crystallization, data collection and data processing of maltose-binding protein (MalE) from the phytopathogen Xanthomonas axonopodis pv. citri

    Get PDF
    Maltose-binding protein is the periplasmic component of the ABC transporter responsible for the uptake of maltose/maltodextrins. The Xanthomonas axonopodis pv. citri maltose-binding protein MalE has been crystallized at 293 Kusing the hanging-drop vapour-diffusion method. The crystal belonged to the primitive hexagonal space group P6_122, with unit-cell parameters a = 123.59, b = 123.59, c = 304.20 Ã…, and contained two molecules in the asymetric unit. It diffracted to 2.24 Ã… resolution
    • …
    corecore