4,356 research outputs found
The place of the Sun among the Sun-like stars
Context. Monitoring of the photometric and chromospheric HK emission data
series of stars similar to the Sun in age and average activity level showed
that there is an empirical correlation between the average stellar
chromospheric activity level and the photometric variability. In general, more
active stars show larger photometric variability. Interestingly, the
measurements and reconstructions of the solar irradiance show that the Sun is
significantly less variable than indicated by the empirical relationship. Aims.
We aim to identify possible reasons for the Sun to be currently outside of this
relationship. Methods. We employed different scenarios of solar HK emission and
irradiance variability and compared them with available time series of Sun-like
stars. Results. We show that the position of the Sun on the diagram of
photometric variability versus chromospheric activity changes with time. The
present solar position is different from its temporal mean position as the
satellite era of continuous solar irradiance measurements has accidentally
coincided with a period of unusually high and stable solar activity. Our
analysis suggests that although present solar variability is significantly
smaller than indicated by the stellar data, the temporal mean solar variability
might be in agreement with the stellar data. We propose that the continuation
of the photometric program and its expansion to a larger stellar sample will
ultimately allow us to constrain the historical solar variability.Comment: 10 pages, 5 figures, accepted for publication in
Astronomy&Astrophysic
Once more on extra quark-lepton generations and precision measurements
Precision measurements of -boson parameters and -boson and -quark
masses put strong constraints on non singlet New Physics. We
demonstrate that one extra generation passes electroweak constraints even when
all new particle masses are well above their direct mass bounds.Comment: Dedicated to L.B. Okun's 80th birthda
Bell inequalities for random fields
The assumptions required for the derivation of Bell inequalities are not
usually satisfied for random fields in which there are any thermal or quantum
fluctuations, in contrast to the general satisfaction of the assumptions for
classical two point particle models. Classical random field models that
explicitly include the effects of quantum fluctuations on measurement are
possible for experiments that violate Bell inequalities.Comment: 18 pages; 1 figure; v4: Essentially the published version; extensive
improvements. v3: Better description of the relationship between classical
random fields and quantum fields; better description of random field models.
More extensive references. v2: Abstract and introduction clarifie
Mass of the higgs versus fourth generation masses
The predicted value of the higgs mass is analyzed assuming the
existence of the fourth generation of leptons () and quarks ().
The steep and flat directions are found in the five-dimensional parameter
space: , , , , . The LEPTOP fit of the precision
electroweak data is compatible (in particular) with GeV, GeV, GeV, GeV, and GeV. The quality of fits drastically improves when the data on b- and
c-quark asymmetries and new NuTeV data on deep inelastic scattering are
ignored.Comment: 8 pages, 4 figure
The Research Unit VolImpact: Revisiting the volcanic impact on atmosphere and climate – preparations for the next big volcanic eruption
This paper provides an overview of the scientific background and the research objectives of the Research Unit “VolImpact” (Revisiting the volcanic impact on atmosphere and climate – preparations for the next big volcanic eruption, FOR 2820). VolImpact was recently funded by the Deutsche Forschungsgemeinschaft (DFG) and started in spring 2019. The main goal of the research unit is to improve our understanding of how the climate system responds to volcanic eruptions. Such an ambitious program is well beyond the capabilities of a single research group, as it requires expertise from complementary disciplines including aerosol microphysical modelling, cloud physics, climate modelling, global observations of trace gas species, clouds and stratospheric aerosols. The research goals will be achieved by building on important recent advances in modelling and measurement capabilities. Examples of the advances in the observations include the now daily near-global observations of multi-spectral aerosol extinction from the limb-scatter instruments OSIRIS, SCIAMACHY and OMPS-LP. In addition, the recently launched SAGE III/ISS and upcoming satellite missions EarthCARE and ALTIUS will provide high resolution observations of aerosols and clouds. Recent improvements in modeling capabilities within the framework of the ICON model family now enable simulations at spatial resolutions fine enough to investigate details of the evolution and dynamics of the volcanic eruptive plume using the large-eddy resolving version, up to volcanic impacts on larger-scale circulation systems in the general circulation model version. When combined with state-of-the-art aerosol and cloud microphysical models, these approaches offer the opportunity to link eruptions directly to their climate forcing. These advances will be exploited in VolImpact to study the effects of volcanic eruptions consistently over the full range of spatial and temporal scales involved, addressing the initial development of explosive eruption plumes (project VolPlume), the variation of stratospheric aerosol particle size and radiative forcing caused by volcanic eruptions (VolARC), the response of clouds (VolCloud), the effects of volcanic eruptions on atmospheric dynamics (VolDyn), as well as their climate impact (VolClim)
Multivariate Granger Causality and Generalized Variance
Granger causality analysis is a popular method for inference on directed
interactions in complex systems of many variables. A shortcoming of the
standard framework for Granger causality is that it only allows for examination
of interactions between single (univariate) variables within a system, perhaps
conditioned on other variables. However, interactions do not necessarily take
place between single variables, but may occur among groups, or "ensembles", of
variables. In this study we establish a principled framework for Granger
causality in the context of causal interactions among two or more multivariate
sets of variables. Building on Geweke's seminal 1982 work, we offer new
justifications for one particular form of multivariate Granger causality based
on the generalized variances of residual errors. Taken together, our results
support a comprehensive and theoretically consistent extension of Granger
causality to the multivariate case. Treated individually, they highlight
several specific advantages of the generalized variance measure, which we
illustrate using applications in neuroscience as an example. We further show
how the measure can be used to define "partial" Granger causality in the
multivariate context and we also motivate reformulations of "causal density"
and "Granger autonomy". Our results are directly applicable to experimental
data and promise to reveal new types of functional relations in complex
systems, neural and otherwise.Comment: added 1 reference, minor change to discussion, typos corrected; 28
pages, 3 figures, 1 table, LaTe
Spectral Analysis of Multi-dimensional Self-similar Markov Processes
In this paper we consider a discrete scale invariant (DSI) process with scale . We consider to have some fix number of
observations in every scale, say , and to get our samples at discrete points
where is obtained by the equality
and . So we provide a discrete time scale
invariant (DT-SI) process with parameter space . We find the spectral representation of the covariance function of
such DT-SI process. By providing harmonic like representation of
multi-dimensional self-similar processes, spectral density function of them are
presented. We assume that the process is also Markov
in the wide sense and provide a discrete time scale invariant Markov (DT-SIM)
process with the above scheme of sampling. We present an example of DT-SIM
process, simple Brownian motion, by the above sampling scheme and verify our
results. Finally we find the spectral density matrix of such DT-SIM process and
show that its associated -dimensional self-similar Markov process is fully
specified by where is
the covariance function of th and th observations of the process.Comment: 16 page
The galactic foreground angular spectra
Galactic synchrotron and free-free foregrounds angular spectra are
analytically estimated with account for interstellar turbulence and radiating
process physics. Unknown parameters of the spectra are obtained by fitting to
observational data
Stable autosolitons in dispersive media with saturable gain and absorption
We introduce the simplest one-dimensional model of a dispersive optical
medium with saturable dissipative nonlinearity and filtering (dispersive loss)
which gives rise to stable solitary pulses (autosolitons). In the particular
case when the dispersive loss is absent, the same model may also be interpreted
as describing a stationary field in a planar optical waveguide with uniformly
distributed saturable gain and absorption. In a certain region of the model's
parameter space, two coexisting solitary-pulse solutions are found numerically,
one of which may be stable. Solving the corresponding linearized eigenvalue
problem, we identify stability borders for the solitary pulses in their
parametric plane. Beyond one of the borders, the symmetric pulse is destroyed
by asymmetric perturbations, and at the other border it undergoes a Hopf
bifurcation, which may turn it into a breather.Comment: A latex text file and four ps files with figures. Physics Letters A,
in pres
- …