6,273 research outputs found
Exact solution of a 2d random Ising model
The model considered is a d=2 layered random Ising system on a square lattice
with nearest neighbours interaction. It is assumed that all the vertical
couplings are equal and take the positive value J while the horizontal
couplings are quenched random variables which are equal in the same row but can
take the two possible values J and J-K in different rows. The exact solution is
obtained in the limit case of infinite K for any distribution of the horizontal
couplings. The model which corresponds to this limit can be seen as an ordinary
Ising system where the spins of some rows, chosen at random, are frozen in an
antiferromagnetic order. No phase transition is found if the horizontal
couplings are independent random variables while for correlated disorder one
finds a low temperature phase with some glassy properties.Comment: 10 pages, Plain TeX, 3 ps figures, submitted to Europhys. Let
Randomly incomplete spectra and intermediate statistics
By randomly removing a fraction of levels from a given spectrum a model is
constructed that describes a crossover from this spectrum to a Poisson
spectrum. The formalism is applied to the transitions towards Poisson from
random matrix theory (RMT) spectra and picket fence spectra. It is shown that
the Fredholm determinant formalism of RMT extends naturally to describe
incomplete RMT spectra.Comment: 9 pages, 2 figures. To appear in Physical Review
Spin Chains as Perfect Quantum State Mirrors
Quantum information transfer is an important part of quantum information
processing. Several proposals for quantum information transfer along linear
arrays of nearest-neighbor coupled qubits or spins were made recently. Perfect
transfer was shown to exist in two models with specifically designed strongly
inhomogeneous couplings. We show that perfect transfer occurs in an entire
class of chains, including systems whose nearest-neighbor couplings vary only
weakly along the chain. The key to these observations is the Jordan-Wigner
mapping of spins to noninteracting lattice fermions which display perfectly
periodic dynamics if the single-particle energy spectrum is appropriate. After
a half-period of that dynamics any state is transformed into its mirror image
with respect to the center of the chain. The absence of fermion interactions
preserves these features at arbitrary temperature and allows for the transfer
of nontrivially entangled states of several spins or qubits.Comment: Abstract extended, introduction shortened, some clarifications in the
text, one new reference. Accepted by Phys. Rev. A (Rapid Communications
Development of boldness and docility in yellow-bellied marmots
Peer reviewedPostprin
Duality symmetry, strong coupling expansion and universal critical amplitudes in two-dimensional \Phi^{4} field models
We show that the exact beta-function \beta(g) in the continuous 2D g\Phi^{4}
model possesses the Kramers-Wannier duality symmetry. The duality symmetry
transformation \tilde{g}=d(g) such that \beta(d(g))=d'(g)\beta(g) is
constructed and the approximate values of g^{*} computed from the duality
equation d(g^{*})=g^{*} are shown to agree with the available numerical
results. The calculation of the beta-function \beta(g) for the 2D scalar
g\Phi^{4} field theory based on the strong coupling expansion is developed and
the expansion of \beta(g) in powers of g^{-1} is obtained up to order g^{-8}.
The numerical values calculated for the renormalized coupling constant
g_{+}^{*} are in reasonable good agreement with the best modern estimates
recently obtained from the high-temperature series expansion and with those
known from the perturbative four-loop renormalization-group calculations. The
application of Cardy's theorem for calculating the renormalized isothermal
coupling constant g_{c} of the 2D Ising model and the related universal
critical amplitudes is also discussed.Comment: 16 pages, REVTeX, to be published in J.Phys.A:Math.Ge
Lifespan theorem for constrained surface diffusion flows
We consider closed immersed hypersurfaces in and evolving by
a class of constrained surface diffusion flows. Our result, similar to earlier
results for the Willmore flow, gives both a positive lower bound on the time
for which a smooth solution exists, and a small upper bound on a power of the
total curvature during this time. By phrasing the theorem in terms of the
concentration of curvature in the initial surface, our result holds for very
general initial data and has applications to further development in asymptotic
analysis for these flows.Comment: 29 pages. arXiv admin note: substantial text overlap with
arXiv:1201.657
Low-Temperature Expansions and Correlation Functions of the Z_3-Chiral Potts Model
Using perturbative methods we derive new results for the spectrum and
correlation functions of the general Z_3-chiral Potts quantum chain in the
massive low-temperature phase. Explicit calculations of the ground state energy
and the first excitations in the zero momentum sector give excellent
approximations and confirm the general statement that the spectrum in the
low-temperature phase of general Z_n-spin quantum chains is identical to one in
the high-temperature phase where the role of charge and boundary conditions are
interchanged. Using a perturbative expansion of the ground state for the Z_3
model we are able to gain some insight in correlation functions. We argue that
they might be oscillating and give estimates for the oscillation length as well
as the correlation length.Comment: 17 pages (Plain TeX), BONN-HE-93-1
Entropy and Correlation Functions of a Driven Quantum Spin Chain
We present an exact solution for a quantum spin chain driven through its
critical points. Our approach is based on a many-body generalization of the
Landau-Zener transition theory, applied to fermionized spin Hamiltonian. The
resulting nonequilibrium state of the system, while being a pure quantum state,
has local properties of a mixed state characterized by finite entropy density
associated with Kibble-Zurek defects. The entropy, as well as the finite spin
correlation length, are functions of the rate of sweep through the critical
point. We analyze the anisotropic XY spin 1/2 model evolved with a full
many-body evolution operator. With the help of Toeplitz determinants calculus,
we obtain an exact form of correlation functions. The properties of the evolved
system undergo an abrupt change at a certain critical sweep rate, signaling
formation of ordered domains. We link this phenomenon to the behavior of
complex singularities of the Toeplitz generating function.Comment: 16 pgs, 7 fg
Mean Field Renormalization Group for the Boundary Magnetization of Strip Clusters
We analyze in some detail a recently proposed transfer matrix mean field
approximation which yields the exact critical point for several two dimensional
nearest neighbor Ising models. For the square lattice model we show explicitly
that this approximation yields not only the exact critical point, but also the
exact boundary magnetization of a semi--infinite Ising model, independent of
the size of the strips used. Then we develop a new mean field renormalization
group strategy based on this approximation and make connections with finite
size scaling. Applying our strategy to the quadratic Ising and three--state
Potts models we obtain results for the critical exponents which are in
excellent agreement with the exact ones. In this way we also clarify some
advantages and limitations of the mean field renormalization group approach.Comment: 16 pages (plain TeX) + 8 figures (PostScript, appended),
POLFIS-TH.XX/9
- …