6,273 research outputs found

    Exact solution of a 2d random Ising model

    Full text link
    The model considered is a d=2 layered random Ising system on a square lattice with nearest neighbours interaction. It is assumed that all the vertical couplings are equal and take the positive value J while the horizontal couplings are quenched random variables which are equal in the same row but can take the two possible values J and J-K in different rows. The exact solution is obtained in the limit case of infinite K for any distribution of the horizontal couplings. The model which corresponds to this limit can be seen as an ordinary Ising system where the spins of some rows, chosen at random, are frozen in an antiferromagnetic order. No phase transition is found if the horizontal couplings are independent random variables while for correlated disorder one finds a low temperature phase with some glassy properties.Comment: 10 pages, Plain TeX, 3 ps figures, submitted to Europhys. Let

    Randomly incomplete spectra and intermediate statistics

    Full text link
    By randomly removing a fraction of levels from a given spectrum a model is constructed that describes a crossover from this spectrum to a Poisson spectrum. The formalism is applied to the transitions towards Poisson from random matrix theory (RMT) spectra and picket fence spectra. It is shown that the Fredholm determinant formalism of RMT extends naturally to describe incomplete RMT spectra.Comment: 9 pages, 2 figures. To appear in Physical Review

    Spin Chains as Perfect Quantum State Mirrors

    Full text link
    Quantum information transfer is an important part of quantum information processing. Several proposals for quantum information transfer along linear arrays of nearest-neighbor coupled qubits or spins were made recently. Perfect transfer was shown to exist in two models with specifically designed strongly inhomogeneous couplings. We show that perfect transfer occurs in an entire class of chains, including systems whose nearest-neighbor couplings vary only weakly along the chain. The key to these observations is the Jordan-Wigner mapping of spins to noninteracting lattice fermions which display perfectly periodic dynamics if the single-particle energy spectrum is appropriate. After a half-period of that dynamics any state is transformed into its mirror image with respect to the center of the chain. The absence of fermion interactions preserves these features at arbitrary temperature and allows for the transfer of nontrivially entangled states of several spins or qubits.Comment: Abstract extended, introduction shortened, some clarifications in the text, one new reference. Accepted by Phys. Rev. A (Rapid Communications

    Duality symmetry, strong coupling expansion and universal critical amplitudes in two-dimensional \Phi^{4} field models

    Full text link
    We show that the exact beta-function \beta(g) in the continuous 2D g\Phi^{4} model possesses the Kramers-Wannier duality symmetry. The duality symmetry transformation \tilde{g}=d(g) such that \beta(d(g))=d'(g)\beta(g) is constructed and the approximate values of g^{*} computed from the duality equation d(g^{*})=g^{*} are shown to agree with the available numerical results. The calculation of the beta-function \beta(g) for the 2D scalar g\Phi^{4} field theory based on the strong coupling expansion is developed and the expansion of \beta(g) in powers of g^{-1} is obtained up to order g^{-8}. The numerical values calculated for the renormalized coupling constant g_{+}^{*} are in reasonable good agreement with the best modern estimates recently obtained from the high-temperature series expansion and with those known from the perturbative four-loop renormalization-group calculations. The application of Cardy's theorem for calculating the renormalized isothermal coupling constant g_{c} of the 2D Ising model and the related universal critical amplitudes is also discussed.Comment: 16 pages, REVTeX, to be published in J.Phys.A:Math.Ge

    Lifespan theorem for constrained surface diffusion flows

    Get PDF
    We consider closed immersed hypersurfaces in R3\R^{3} and R4\R^4 evolving by a class of constrained surface diffusion flows. Our result, similar to earlier results for the Willmore flow, gives both a positive lower bound on the time for which a smooth solution exists, and a small upper bound on a power of the total curvature during this time. By phrasing the theorem in terms of the concentration of curvature in the initial surface, our result holds for very general initial data and has applications to further development in asymptotic analysis for these flows.Comment: 29 pages. arXiv admin note: substantial text overlap with arXiv:1201.657

    Low-Temperature Expansions and Correlation Functions of the Z_3-Chiral Potts Model

    Get PDF
    Using perturbative methods we derive new results for the spectrum and correlation functions of the general Z_3-chiral Potts quantum chain in the massive low-temperature phase. Explicit calculations of the ground state energy and the first excitations in the zero momentum sector give excellent approximations and confirm the general statement that the spectrum in the low-temperature phase of general Z_n-spin quantum chains is identical to one in the high-temperature phase where the role of charge and boundary conditions are interchanged. Using a perturbative expansion of the ground state for the Z_3 model we are able to gain some insight in correlation functions. We argue that they might be oscillating and give estimates for the oscillation length as well as the correlation length.Comment: 17 pages (Plain TeX), BONN-HE-93-1

    Entropy and Correlation Functions of a Driven Quantum Spin Chain

    Full text link
    We present an exact solution for a quantum spin chain driven through its critical points. Our approach is based on a many-body generalization of the Landau-Zener transition theory, applied to fermionized spin Hamiltonian. The resulting nonequilibrium state of the system, while being a pure quantum state, has local properties of a mixed state characterized by finite entropy density associated with Kibble-Zurek defects. The entropy, as well as the finite spin correlation length, are functions of the rate of sweep through the critical point. We analyze the anisotropic XY spin 1/2 model evolved with a full many-body evolution operator. With the help of Toeplitz determinants calculus, we obtain an exact form of correlation functions. The properties of the evolved system undergo an abrupt change at a certain critical sweep rate, signaling formation of ordered domains. We link this phenomenon to the behavior of complex singularities of the Toeplitz generating function.Comment: 16 pgs, 7 fg

    Mean Field Renormalization Group for the Boundary Magnetization of Strip Clusters

    Full text link
    We analyze in some detail a recently proposed transfer matrix mean field approximation which yields the exact critical point for several two dimensional nearest neighbor Ising models. For the square lattice model we show explicitly that this approximation yields not only the exact critical point, but also the exact boundary magnetization of a semi--infinite Ising model, independent of the size of the strips used. Then we develop a new mean field renormalization group strategy based on this approximation and make connections with finite size scaling. Applying our strategy to the quadratic Ising and three--state Potts models we obtain results for the critical exponents which are in excellent agreement with the exact ones. In this way we also clarify some advantages and limitations of the mean field renormalization group approach.Comment: 16 pages (plain TeX) + 8 figures (PostScript, appended), POLFIS-TH.XX/9
    corecore