22,656 research outputs found

    The Charged Neutrino: A New Approach to the Solar Neutrino Problem

    Full text link
    We have considered the effect of the reduction of the solar neutrino flux on earth due to the deflection of the charged neutrino by the magnetic field of the solar convective zone. The antisymmetry of this magnetic field about the plane of the solar equator induces the anisotropy of the solar neutrino flux thus creating the deficit of the neutrino flux on the earth. The deficit has been estimated in terms of solar and neutrino parameters and the condition of a 50 \% deficit has been obtained: Q_{\nu} gradH \agt 10^{-18} eG/cm where QνQ_{\nu} is the neutrino electric charge, gradHgradH is the gradient of the solar toroidal magnetic field, e is the electron charge. Some attractive experimental consequences of this scenario are qualitatively discussed.Comment: 15 pages, UM-P/94-26, in REVTE

    Magnetic Monopole and the Finite Photon Mass: Are They Compatible?

    Get PDF
    We analyze the role played by the gauge invariance for the existence of Dirac monopole. To this end, we consider the electrodynamics with massive photon and ask if the magnetic charge can be introduced there. We show that the derivation of the Dirac quantization condition based on the angular momentum algebra cannot be generalized to the case of massive electrodynamics. Possible implications of this result are briefly discussed.Comment: 12 pages, revtex, no figure

    Black holes with magnetic charge and quantized mass

    Get PDF
    We examine the issue of magnetic charge quantization in the presence of black holes. It is pointed out that quantization of magnetic charge can lead to the mass quantization for magnetically charged black holes. We also discuss some implications for the experimental searches of magnetically charged black holes.Comment: RevTeX, 11 pages, Invited paper for the first editorial volume of the book series "Contemporary Fundamental Physics" by the Nova Science Publisher

    Electron-positron annihilation into Dirac magnetic monopole and antimonopole: the string ambiguity and the discrete symmetries

    Get PDF
    We address the problem of string arbitrariness in the quantum field theory of Dirac magnetic monopoles. Different prescriptions are shown to yield different physical results. The constraints due to the discrete symmetries (C and P) are derived for the process of electron- positron annihilation into the monopole-antimonopole pair. In the case of the annihilation through the one-photon channel, the production of spin 0 monopoles is absolutely forbidden; spin 1/2 monopole and antimonopole should have the same helicities (or, equivalently, the monopole-antimonopole state should be p-wave 1P1^1P_1).Comment: 14 pages, revtex, 3 figure

    Finite Temperature Behavior of Small Silicon and Tin Clusters: An Ab Initio Molecular Dynamics Study

    Get PDF
    The finite temperature behavior of small Silicon (Si10_{10}, Si15_{15}, and Si20_{20}) and Tin (Sn10_{10} and Sn20_{20}) clusters is studied using isokinetic Born-Oppenheimer molecular dynamics. The lowest equilibrium structures of all the clusters are built upon a highly stable tricapped trigonal prism unit which is seen to play a crucial role in the finite temperature behavior of these clusters. Thermodynamics of small tin clusters (Sn10_{10} and Sn20_{20}) is revisited in light of the recent experiments on tin clusters of sizes 18-21 [G. A. Breaux et. al. Phys. Rev. B {\bf 71} 073410 (2005)]. We have calculated heat capacities using multiple histogram technique for Si10_{10}, Sn10_{10} and Si15_{15} clusters. Our calculated specific heat curves have a main peak around 2300 K and 2200 K for Si10_{10} and Sn10_{10} clusters respectively. However, various other melting indicators such as root mean square bond length fluctuations, mean square displacements show that diffusive motion of atoms within the cluster begins around 650 K. The finite temperature behavior of Si10_{10} and Sn10_{10} is dominated by isomerization and it is rather difficult to discern the temperature range for transition region. On the other hand, Si15_{15} does show a liquid like behavior over a short temperature range followed by the fragmentation observed around 1800 K. Finite temperature behavior of Si20_{20} and Sn20_{20} show that these clusters do not melt but fragment around 1200 K and 650 K respectively.Comment: 9 figure
    • …
    corecore