8,607 research outputs found

    Conserving Approximations in Time-Dependent Density Functional Theory

    Get PDF
    In the present work we propose a theory for obtaining successively better approximations to the linear response functions of time-dependent density or current-density functional theory. The new technique is based on the variational approach to many-body perturbation theory (MBPT) as developed during the sixties and later expanded by us in the mid nineties. Due to this feature the resulting response functions obey a large number of conservation laws such as particle and momentum conservation and sum rules. The quality of the obtained results is governed by the physical processes built in through MBPT but also by the choice of variational expressions. We here present several conserving response functions of different sophistication to be used in the calculation of the optical response of solids and nano-scale systems.Comment: 11 pages, 4 figures, revised versio

    Crossover from Reptation to Rouse dynamics in the Cage Model

    Full text link
    The two-dimensional cage model for polymer motion is discussed with an emphasis on the effect of sideways motions, which cross the barriers imposed by the lattice. Using the Density Matrix Method as a solver of the Master Equation, the renewal time and the diffusion coefficient are calculated as a function of the strength of the barrier crossings. A strong crossover influence of the barrier crossings is found and it is analyzed in terms of effective exponents for a given chain length. The crossover scaling functions and the crossover scaling exponents are calculated.Comment: RevTeX, 11 PostScript figures include

    Crossover behavior for long reptating polymers

    Full text link
    We analyze the Rubinstein-Duke model for polymer reptation by means of density matrix renormalization techniques. We find a crossover behavior for a series of quantities as function of the polymer length. The crossover length may become very large if the mobility of end groups is small compared to that of the internal reptons. Our results offer an explanation to a controversy between theory, experiments and simulations on the leading and subleading scaling behavior of the polymer renewal time and diffusion constant.Comment: 4 Pages, RevTeX, and 4 PostScript figures include

    |V|: New insight into the circular polarization of radio pulsars

    Full text link
    We present a study of single pulses from nine bright northern pulsars to investigate the behaviour of circular polarisation, V. The observations were conducted with the Effelsberg 100-m radio telescope at 1.41 GHz and 4.85 GHz and the Westerbork radio telescope at 352 MHz. For the first time, we present the average profile of the absolute circular polarisation |V| in the single pulses. We demonstrate that the average profile of |V| is the distinguishing feature between pulse components that exhibit low V in the single pulses and components that exhibit high V of either handedness, despite both cases resulting in a low mean. We also show that the |V| average profile remains virtually constant with frequency, which is not generally the case for V, leading us to the conclusion that |V| is a key quantity in the pulsar emission problem.Comment: 5 pages, accepted for publication in MNRAS letter

    Waiting and Residence Times of Brownian Interface Fluctuations

    Full text link
    We report on the residence times of capillary waves above a given height hh and on the typical waiting time in between such fluctuations. The measurements were made on phase separated colloid-polymer systems by laser scanning confocal microscopy. Due to the Brownian character of the process, the stochastics vary with the chosen measurement interval Δt\Delta t. In experiments, the discrete scanning times are a practical cutoff and we are able to measure the waiting time as a function of this cutoff. The measurement interval dependence of the observed waiting and residence times turns out to be solely determined by the time dependent height-height correlation function g(t)g(t). We find excellent agreement with the theory presented here along with the experiments.Comment: 5 figure

    Time correlations in a confined magnetized free-electron gas

    Full text link
    The time-dependent pair correlation functions for a degenerate ideal quantum gas of charged particles in a uniform magnetic field are studied on the basis of equilibrium statistics. In particular, the influence of a flat hard wall on the correlations is investigated, both for a perpendicular and a parallel orientation of the wall with respect to the field. The coherent and incoherent parts of the time-dependent structure function in position space are determined from an expansion in terms of the eigenfunctions of the one-particle Hamiltonian. For the bulk of the system, the intermediate scattering function and the dynamical structure factor are derived by taking successive Fourier transforms. In the vicinity of the wall the time-dependent coherent structure function is found to decay faster than in the bulk. For coinciding positions near the wall the form of the structure function turns out to be independent of the orientation of the wall. Numerical results are shown to corroborate these findings.Comment: 25 pages, 14 figures, to be published in Journal of Physics

    Conserving approximations in time-dependent quantum transport: Initial correlations and memory effects

    Full text link
    We study time-dependent quantum transport in a correlated model system by means of time-propagation of the Kadanoff-Baym equations for the nonequilibrium many-body Green function. We consider an initially contacted equilibrium system of a correlated central region coupled to tight-binding leads. Subsequently a time-dependent bias is switched on after which we follow in detail the time-evolution of the system. Important features of the Kadanoff-Baym approach are 1) the possibility of studying the ultrafast dynamics of transients and other time-dependent regimes and 2) the inclusion of exchange and correlation effects in a conserving approximation scheme. We find that initial correlation and memory terms due to many-body interactions have a large effect on the transient currents. Furthermore the value of the steady state current is found to be strongly dependent on the approximation used to treat the electronic interactions.Comment: 5 pages, 2 figure
    • …
    corecore