971 research outputs found

    Pressure-induced superconductivity in the giant Rashba system BiTeI

    Full text link
    At ambient pressure, BiTeI is the first material found to exhibit a giant Rashba splitting of the bulk electronic bands. At low pressures, BiTeI undergoes a transition from trivial insulator to topological insulator. At still higher pressures, two structural transitions are known to occur. We have carried out a series of electrical resistivity and AC magnetic susceptibility measurements on BiTeI at pressure up to ~40 GPa in an effort to characterize the properties of the high-pressure phases. A previous calculation found that the high-pressure orthorhombic P4/nmm structure BiTeI is a metal. We find that this structure is superconducting with Tc values as high as 6 K. AC magnetic susceptibility measurements support the bulk nature of the superconductivity. Using electronic structure and phonon calculations, we compute Tc and find that our data is consistent with phonon-mediated superconductivity.Comment: 7 pages, 7 figure

    Alternative route to charge density wave formation in multiband systems

    Full text link
    Charge and spin density waves, periodic modulations of the electron and magnetization densities, respectively, are among the most abundant and non-trivial low-temperature ordered phases in condensed matter. The ordering direction is widely believed to result from the Fermi surface topology. However, several recent studies indicate that this common view needs to be supplemented. Here, we show how an enhanced electron-lattice interaction can contribute to or even determine the selection of the ordering vector in the model charge density wave system ErTe3. Our joint experimental and theoretical study allows us to establish a relation between the selection rules of the electronic light scattering spectra and the enhanced electron-phonon coupling in the vicinity of band degeneracy points. This alternative proposal for charge density wave formation may be of general relevance for driving phase transitions into other broken-symmetry ground states, particularly in multiband systems such as the iron based superconductors

    Studies on the Weak Itinerant Ferromagnet SrRuO3 under High Pressure to 34 GPa

    Full text link
    The dependence of the Curie temperature Tc on nearly hydrostatic pressure has been determined to 17.2 GPa for the weak itinerant ferromagnetic SrRuO3 in both polycrystalline and single-crystalline form. Tc is found to decrease under pressure from 162 K to 42.7 K at 17.2 GPa in nearly linear fashion at the rate dTc/dP = -6.8 K/GPa. No superconductivity was found above 4 K in the pressure range 17 to 34 GPa. Room-temperature X-ray diffraction studies to 25.3 GPa reveal no structural phase transition but indicate that the average Ru-O-Ru bond angle passes through a minimum near 15 GPa. The bulk modulus and its pressure derivative were determined to be B =192(3) GPa and B' = 5.0(3), respectively. Parallel ac susceptibility studies on polycrystalline CaRuO3 at 6 and 8 GPa pressure found no evidence for either ferromagnetism or superconductivity above 4 K

    Delphi with feedback of rationales: how large can a Delphi group be such that participants are not overloaded, de-motivated, or disengaged?

    Get PDF
    In this paper, we investigate the effect of Delphi group size and opinion diversity on group members’ information load as well as on their overall experience of the Delphi process - in terms of task involvement (enjoyment and interest) and in terms of group sway (the influence and helpfulness of others’ rationales). For Delphi applications involving the exchange of rationales between participants, we found no evidence that group sizes of up to 19 participants cause information overload or de-motivation and disengagement of participants

    High-pressure, transport, and thermodynamic properties of CeTe3

    Full text link
    We have performed high-pressure, electrical resistivity, and specific heat measurements on CeTe3 single crystals. Two magnetic phases with nonparallel magnetic easy axes were detected in electrical resistivity and specific heat at low temperatures. We also observed the emergence of an additional phase at high pressures and low temperatures and a possible structural phase transition detected at room temperature and at 45 kbar, which can possibly be related with the lowering of the charge-density wave transition temperature known for this compound.Comment: 5 pages, 4 figure

    Systematic Study on Fluorine-doping Dependence of Superconducting and Normal State Properties in LaFePO1-xFx

    Full text link
    We have investigated the fluorine-doping dependence of lattice constants, transports and specific heat for polycrystalline LaFePO1-xFx. F doping slightly and monotonically decreases the in-plane lattice parameter. In the normal state, electrical resistivity at low temperature is proportional to the square of temperature and the electronic specific heat coefficient has large value, indicating the existence of moderate electron-electron correlation in this system. Hall coefficient has large magnitude, and shows large temperature dependence, indicating the low carrier density and multiple carriers in this system. Temperature dependence of the upper critical field suggests that the system is a two gap superconductor. The F-doping dependence of these properties in this system are very weak, while in the FeAs system (LaFeAsO), the F doping induces the large changes in electronic properties. This difference is probably due to the different F-doping dependence of the lattice in these two systems. It has been revealed that a pure effect of electron doping on electronic properties is very weak in this Fe pnictide compound.Comment: 8 pages, 5 figures, accepted for publication in J. Phys. Soc. Jp

    High intensity interval training in a real world setting: A randomized controlled feasibility study in overweight inactive adults, measuring change in maximal oxygen uptake

    Get PDF
    Background In research clinic settings, overweight adults undertaking HIIT (high intensity interval training) improve their fitness as effectively as those undertaking conventional walking programs but can do so within a shorter time spent exercising. We undertook a randomized controlled feasibility (pilot) study aimed at extending HIIT into a real world setting by recruiting overweight/obese, inactive adults into a group based activity program, held in a community park. Methods Participants were allocated into one of three groups. The two interventions, aerobic interval training and maximal volitional interval training, were compared with an active control group undertaking walking based exercise. Supervised group sessions (36 per intervention) were held outdoors. Cardiorespiratory fitness was measured using VO2max (maximal oxygen uptake, results expressed in ml/min/kg), before and after the 12 week interventions. Results On ITT (intention to treat) analyses, baseline (N = 49) and exit (N = 39) O2 was 25.3±4.5 and 25.3±3.9, respectively. Participant allocation and baseline/exit VO2max by group was as follows: Aerobic interval training N =  16, 24.2±4.8/25.6±4.8; maximal volitional interval training N = 16, 25.0±2.8/25.2±3.4; walking N = 17, 26.5±5.3/25.2±3.6. The post intervention change in VO2max was +1.01 in the aerobic interval training, −0.06 in the maximal volitional interval training and −1.03 in the walking subgroups. The aerobic interval training subgroup increased VO2max compared to walking (p = 0.03). The actual (observed, rather than prescribed) time spent exercising (minutes per week, ITT analysis) was 74 for aerobic interval training, 45 for maximal volitional interval training and 116 for walking (p =  0.001). On descriptive analysis, the walking subgroup had the fewest adverse events. Conclusions In contrast to earlier studies, the improvement in cardiorespiratory fitness in a cohort of overweight/obese participants undertaking aerobic interval training in a real world setting was modest. The most likely reason for this finding relates to reduced adherence to the exercise program, when moving beyond the research clinic setting

    Comparison of the pressure dependences of Tc in the trivalent d-electron superconductors

    Full text link
    Whereas dhcp La superconducts at ambient pressure with Tc = 5 K, the other trivalent d-electron metals Sc, Y, and Lu only superconduct if high pressures are applied. Earlier measurements of the pressure dependence of Tc for Sc and Lu metal are here extended to much higher pressures. Whereas Tc for Lu increases monotonically with pressure to 12.4 K at 174 GPa (1.74 Mbar). Tc for Sc reaches 19.6 K at 107 GPa, the 2nd highest value observed for any elemental superconductor. At higher pressures a phase transition occurs whereupon Tc drops to 8.31 K at 111 GPa. The Tc(P) dependences for Sc and Lu are compared to those of Y and La. An interesting correlation is pointed out between the value of Tc and the fractional free volume available to the conduction electrons outside the ion cores, a quantity which is directly related to the number of d electrons in the conduction band
    • …
    corecore