997 research outputs found
Triple cascade behaviour in QG and drift turbulence and generation of zonal jets
We study quasigeostrophic (QG) and plasma drift turbulence within the Charney-Hasegawa-Mima (CHM) model. We focus on the zonostrophy, an extra invariant in the CHM model, and on its role in the formation of zonal jets. We use a generalized Fjørtoft argument for the energy, enstrophy, and zonostrophy and show that they cascade anisotropically into nonintersecting sectors in k space with the energy cascading towards large zonal scales. Using direct numerical simulations of the CHM equation, we show that zonostrophy is well conserved, and the three invariants cascade as predicted by the Fjørtoft argument
Strong ExB shear flows in the pedestal region in H-mode plasma
We report the first experimental observation of stationary zonal flows in the
pedestal region of the H-mode plasma in the H-1 toroidal heliac. Strong peaks
in E_r shear mark the top and foot of the density pedestal. Strong m=n=0
low-frequency (f < 0.6 kHz) zonal flows are observed in regions of increased
E_r, suggesting substantial contribution of zonal flows to the spatial
modulation of E_r radial profiles. Radial localization of zonal flows is
correlated with a region of zero magnetic shear and low-order (7/5) rational
surfaces.Comment: 4 pages, 5 figure
Tau Polarization in and
We discuss the longitudinal and transverse -polarization in inclusive
decays of hadrons containing -quarks. The calculation is performed by means
of an OPE in HQET. Some mathematical difficulties in calculating transverse
polarizations are explained. Numerical results are presented for longitudinal
and for transverse polarizations, both in and perpendicular to the decay plane.Comment: LATEX, 20 pages, 5 Postscript figure
Action minimizing fronts in general FPU-type chains
We study atomic chains with nonlinear nearest neighbour interactions and
prove the existence of fronts (heteroclinic travelling waves with constant
asymptotic states). Generalizing recent results of Herrmann and Rademacher we
allow for non-convex interaction potentials and find fronts with non-monotone
profile. These fronts minimize an action integral and can only exists if the
asymptotic states fulfil the macroscopic constraints and if the interaction
potential satisfies a geometric graph condition. Finally, we illustrate our
findings by numerical simulations.Comment: 19 pages, several figure
Self-organization in turbulence as a route to order in plasma and fluids
Transitions from turbulence to order are studied experimentally in thin fluid
layers and magnetically confined toroidal plasma. It is shown that turbulence
self-organizes through the mechanism of spectral condensation. The spectral
redistribution of the turbulent energy leads to the reduction in the turbulence
level, generation of coherent flow, reduction in the particle diffusion and
increase in the system's energy. The higher order state is sustained via the
nonlocal spectral coupling of the linearly unstable spectral range to the
large-scale mean flow. The similarity of self-organization in two-dimensional
fluids and low-to-high confinement transitions in plasma suggests the
universality of the mechanism.Comment: 5 pages, 4 figure
Clustering of matter in waves and currents
The growth rate of small-scale density inhomogeneities (the entropy
production rate) is given by the sum of the Lyapunov exponents in a random
flow. We derive an analytic formula for the rate in a flow of weakly
interacting waves and show that in most cases it is zero up to the fourth order
in the wave amplitude. We then derive an analytic formula for the rate in a
flow of potential waves and solenoidal currents. Estimates of the rate and the
fractal dimension of the density distribution show that the interplay between
waves and currents is a realistic mechanism for providing patchiness of
pollutant distribution on the ocean surface.Comment: 4 pages, 1 figur
Scanning electronâacoustic microscopy of MgO crystals
The capability of scanning electronâacoustic microscopy in the characterization of MgO crystals has been studied. The conditions for the observation of different surface and subsurface features in asâgrown and deformed crystals are described and the results are discussed on the basis of thermal and nonthermal mechanisms of acoustic signalgeneration
- âŚ