583 research outputs found

    Layer Analysis of the Structure of Water Confined in Vycor Glass

    Full text link
    A Molecular Dynamics simulation of the microscopic structure of water confined in a silica pore is presented. A single cavity in the silica glass has been modeled as to reproduce the main features of the pores of real Vycor glass. A layer analysis of the site-site radial distribution functions evidence the presence in the pore of two subsets of water molecules with different microscopic structure. Molecules which reside in the inner layer, close to the center of the pore, have the same structure as bulk water but at a temperature of 30 K higher. On the contrary the structure of the water molecules in the outer layer, close to the substrate, is strongly influenced by the water-substrate hydrophilic interaction and sensible distortions of the H-bond network and of the orientational correlations between neighboring molecules show up. Lowering the hydration has little effect on the structure of water in the outer layer. The consequences on experimental determinations of the structural properties of water in confinement are discussed.Comment: 6 pages, 8 figures included in the text, one figure added, changes in the tex

    Influence of the Environment Fluctuations on Incoherent Neutron Scattering Functions

    Full text link
    In extending the conventional dynamic models, we consider a simple model to account for the environment fluctuations of particle atoms in a protein system and derive the elastic incoherent structure factor (EISF) and the incoherent scattering correlation function C(Q,t) for both the jump dynamics between sites with fluctuating site interspacing and for the diffusion inside a fluctuating sphere. We find that the EISF of the system (or the normalized elastic intensity) is equal to that in the absence of fluctuations averaged over the distribution of site interspacing or sphere radius a. The scattering correlation function is C(Q,t)=nψ(t)C(Q,t)=\sum_{n} \psi(t), where the average is taken over the Q-dependent effective distribution of relaxation rates \lambda_n(a) and \psi(t) is the correlation function of the length a. When \psi(t)=1, the relaxation of C(Q,t) is exponential for the jump dynamics between sites (since \lambda_n(a) is independent of a) while it is nonexponential for diffusion inside a sphere.Comment: 7 pages, 7 eps figure

    Crystal-like high frequency phonons in the amorphous phases of solid water

    Full text link
    The high frequency dynamics of low- (LDA) and high-density amorphous-ice (HDA) and of cubic ice (I_c) has been measured by inelastic X-ray Scattering (IXS) in the 1-15 nm^{-1} momentum transfer (Q) range. Sharp phonon-like excitations are observed, and the longitudinal acoustic branch is identified up to Q = 8nm^{-1} in LDA and I_c and up to 5nm^{-1} in HDA. The narrow width of these excitations is in sharp contrast with the broad features observed in all amorphous systems studied so far. The "crystal-like" behavior of amorphous ices, therefore, implies a considerable reduction in the number of decay channels available to sound-like excitations which is assimilated to low local disorder.Comment: 4 pages, 3 figure

    A versatile protocol for Stille−Migita cross coupling reactions

    No full text
    The combination of catalytic amounts of [Pd(PPh3)4], copper thiophene-2-carboxylate (CuTC) and [Ph2PO2][NBu4] allowed a series of exigent Stille–Migita reactions to be performed with high yields; as the protocol is fluoride free, a variety of O-silyl and C-silyl groups remained intact

    Magnetic carbon nanotubes: a new tool for shepherding mesenchymal stem cells by magnetic fields

    Get PDF
    We investigated the interaction between magnetic carbon nanotubes (CNTs) and mesenchymal stem cells (MSCs), and their ability to guide these intravenously injected cells in living rats by using an external magnetic field. MATERIALS & METHODS: Multiwalled CNTs were used to treat MSCs derived from rat bone marrow. Cytotoxicity induced by nanotubes was studied using the WST-1 proliferation and Hoechest 33258 apoptosis assays. The effects of nanotubes on MSCs were evaluated by monitoring the effects on cellular growth rates, immunophenotyping and differentiation, and on the arrangement of cytoskeletal actin. MSCs loaded with nanotubes were injected in vivo in the portal vein of rats driving their localization in the liver by magnetic field. An histological analysis was performed on the liver, lungs and kidneys of all animals. RESULTS: CNTs did not affect cell viability and their ability to differentiate in osteocytes and adipocytes. Both the CNTs and the magnetic field did not alter the cell growth rate, phenotype and cytoskeletal conformation. CNTs, when exposed to magnetic fields, are able to shepherd MSCs towards the magnetic source in vitro. Moreover, the application of a magnetic field alters the biodistribution of CNT-labelled MSCs after intravenous injection into rats, increasing the accumulation of cells into the target organ (liver). CONCLUSION: Multiwalled CNTs hold the potential for use as nanodevices to improve therapeutic protocols for transplantation and homing of stem cells in vivo. This could pave the way for the development of new strategies for the manipulation/guidance of MSCs in regenerative medicine and cell transplantation

    Total Syntheses of Amphidinolide H and G

    Get PDF
    Eureka! The first conquest of the exceptionally potent cytotoxic agent amphidinolide H, which exhibits activity in the picomolar range against human epidermoid cancer cells, was long overdue. The successful route critically hinges upon the scrupulous optimization of the fragment-coupling events (see picture; RCM=ring-closing metathesis) and on the careful adjustment of the peripheral protecting-group pattern

    Static and dynamic evaluation of pelvic floor disorders with an open low-field tilting magnet.

    Get PDF
    AIM: To assess the feasibility of magnetic resonance defaecography (MRD) in pelvic floor disorders using an open tilting magnet with a 0.25 T static field and to compare the results obtained from the same patient both in supine and orthostatic positions. MATERIALS AND METHODS: From May 2010 to November 2011, 49 symptomatic female subjects (mean age 43.5 years) were enrolled. All the patients underwent MRD in the supine and orthostatic positions using three-dimensional (3D) hybrid contrast-enhanced (HYCE) sequences and dynamic gradient echo (GE) T1-weighted sequences. All the patients underwent conventional defaecography (CD) to correlate both results. Two radiologists evaluated the examinations; inter and intra-observer concordance was measured. The results obtained in the two positions were compared between them and with CD. RESULTS: The comparison between CD and MRD found statistically significant differences in the evaluation of anterior and posterior rectocoele during defaecation in both positions and of rectal prolapse under the pubo-coccygeal line (PCL) during evacuation, only in the supine position (versus MRD orthostatic: rectal prolapse p < 0.0001; anterior rectocoele p < 0.001; posterior rectocoele p = 0.008; versus CD: rectal prolapse p < 0.0001; anterior rectocoele p < 0.001; posterior rectocoele p = 0.01). The value of intra-observer intra-class correlation coefficient (ICC) ranged from good to excellent; the interobserver ICC from moderate to excellent. CONCLUSION: MRD is feasible with an open low-field tilting magnet, and it is more accurate in the orthostatic position than in the supine position to evaluate pelvic floor disorders

    Total Syntheses of Amphidinolides B1, B4, G1, H1 and Structure Revision of Amphidinolide H2

    No full text
    Nature is a pretty unselective “chemist” when it comes to making the highly cytotoxic amphidinolide macrolides of the B/G/H series. To date, 16 different such compounds have been isolated, all of which could now be approached by a highly convergent and largely catalysis-based route (see figure). This notion is exemplified by the total synthesis of five prototype members of this family. Dinoflagellates of the genus Amphidinium produce a “library” of closely related secondary metabolites of mixed polyketide origin, which are extremely scarce but highly promising owing to the exceptional cytotoxicity against various cancer cell lines. Because of the dense array of sensitive functionalities on their largely conserved macrocyclic frame, however, these amphidinolides of the B, D, G and H types elapsed many previous attempts at their synthesis. Described herein is a robust, convergent and hence general blueprint which allowed not only to conquest five prototype members of these series, but also holds the promise of making “non-natural” analogues available by diverted total synthesis. This notion transpires for a synthesis-driven structure revision of amphidinolide H2. The successful route hinges upon a highly productive Stille–Migita cross-coupling reaction at the congested and chemically labile 1,3-diene site present in all such targets, which required the development of a modified chloride- and fluoride-free protocol. The macrocyclic ring could be formed with high efficiency and selectivity by ring-closing metathesis (RCM) engaging a vinyl epoxide unit as one of the reaction partners. Because of the sensitivity of the targets to oxidizing and reducing conditions as well as to pH changes, the proper adjustment of the protecting group pattern for the peripheral -OH functions also constitutes a critical aspect, which has to converge to silyl groups only once the diene is in place. Tris(dimethylamino)sulfonium difluorotrimethylsilicate (TASF) turned out to be a sufficiently mild fluoride source to allow for the final deprotection without damaging the precious macrolides

    Liquid-Liquid Phase Transitions for Soft-Core Attractive Potentials

    Get PDF
    Using event driven molecular dynamics simulations, we study a three dimensional one-component system of spherical particles interacting via a discontinuous potential combining a repulsive square soft core and an attractive square well. In the case of a narrow attractive well, it has been shown that this potential has two metastable gas-liquid critical points. Here we systematically investigate how the changes of the parameters of this potential affect the phase diagram of the system. We find a broad range of potential parameters for which the system has both a gas-liquid critical point and a liquid-liquid critical point. For the liquid-gas critical point we find that the derivatives of the critical temperature and pressure, with respect to the parameters of the potential, have the same signs: they are positive for increasing width of the attractive well and negative for increasing width and repulsive energy of the soft core. This result resembles the behavior of the liquid-gas critical point for standard liquids. In contrast, for the liquid-liquid critical point the critical pressure decreases as the critical temperature increases. As a consequence, the liquid-liquid critical point exists at positive pressures only in a finite range of parameters. We present a modified van der Waals equation which qualitatively reproduces the behavior of both critical points within some range of parameters, and give us insight on the mechanisms ruling the dependence of the two critical points on the potential's parameters. The soft core potential studied here resembles model potentials used for colloids, proteins, and potentials that have been related to liquid metals, raising an interesting possibility that a liquid-liquid phase transition may be present in some systems where it has not yet been observed.Comment: 29 pages, 15 figure

    Liquid-Liquid Phase Transition for an Attractive Isotropic Potential with Wide Repulsive Range

    Full text link
    Recent experimental and theoretical results have shown the existence of a liquid-liquid phase transition in isotropic systems, such as biological solutions and colloids, whose interaction can be represented via an effective potential with a repulsive soft-core and an attractive part. We investigate how the phase diagram of a schematic general isotropic system, interacting via a soft-core squared attractive potential, changes by varying the parameters of the potential. It has been shown that this potential has a phase diagram with a liquid-liquid phase transition in addition to the standard gas-liquid phase transition and that, for a short-range soft-core, the phase diagram resulting from molecular dynamics simulations can be interpreted through a modified van der Waals equation. Here we consider the case of soft-core ranges comparable with or larger than the hard-core diameter. Because an analysis using molecular dynamics simulations of such systems or potentials is too time-demanding, we adopt an integral equation approach in the hypernetted-chain approximation. Thus we can estimate how the temperature and density of both critical points depend on the potential's parameters for large soft-core ranges. The present results confirm and extend our previous analysis, showing that this potential has two fluid-fluid critical points that are well separated in temperature and in density only if there is a balance between the attractive and repulsive part of the potential. We find that for large soft-core ranges our results satisfy a simple relation between the potential's parameters
    corecore