1,235 research outputs found

    Thermofield Dynamics of the Heterotic String - Physical Aspects of the Thermal Duality -

    Full text link
    The thermofield dynamics of the D = 10 heterotic thermal string theory is described in proper reference to the thermal duality symmetry as well as the thermal stability of modular invariance in association with the global phase structure of the D = 10 heterotic thermal string ensemble.Comment: 8 pages, LaTeX, Minor correction

    Finite Temperature QCD on Anisotropic Lattices

    Full text link
    We present results for mesonic propagators in temporal and spatial direction and for topological properties at T below and above the deconfining transition in quenched QCD. We use anisotropic lattices and Wilson fermions.Comment: 6 pages, 7 figures, Talk given at 16th International Symposium on Lattice Field Theory (LATTICE 98(hightemp)) , Boulder, CO, 13-18 Jul 1998. (Replaced: Fig.4 corrected, further minor modifications in legends and text.

    Entanglement induced by nonadiabatic chaos

    Full text link
    We investigate entanglement between electronic and nuclear degrees of freedom for a model nonadiabatic system. We find that entanglement (measured by the von Neumann entropy of the subsystem for the eigenstates) is large in a statistical sense when the system shows ``nonadiabatic chaos'' behavior which was found in our previous work [Phys. Rev. E {\bf 63}, 066221 (2001)]. We also discuss non-statistical behavior of the eigenstates for the regular cases.Comment: 4 pages, 6 figures, submitted to Phys. Rev.

    Dynamic treatment of vibrational energy relaxation in a heterogeneous and fluctuating environment

    Full text link
    A computational approach to describe the energy relaxation of a high-frequency vibrational mode in a fluctuating heterogeneous environment is outlined. Extending previous work [H. Fujisaki, Y. Zhang, and J.E. Straub, J. Chem. Phys. {\bf 124}, 144910 (2006)], second-order time-dependent perturbation theory is employed which includes the fluctuations of the parameters in the Hamiltonian within the vibrational adiabatic approximation. This means that the time-dependent vibrational frequencies along an MD trajectory are obtained via a partial geometry optimization of the solute with fixed solvent and a subsequent normal mode calculation. Adopting the amide I mode of N-methylacetamide in heavy water as a test problem, it is shown that the inclusion of dynamic fluctuations may significantly change the vibrational energy relaxation. In particular, it is found that relaxation occurs in two phases, because for short times (≲\lesssim 200 fs) the spectral density appears continuous due to the frequency-time uncertainty relation, while at longer times the discrete nature of the bath becomes apparent. Considering the excellent agreement between theory and experiment, it is speculated if this behavior can explain the experimentally obtained biphasic relaxation the amide I mode of N-methylacetamide.Comment: 24 pages, 7 figures, submitted to J. Chem. Phy

    Bosonic D-branes at finite temperature with an external field

    Get PDF
    Bosonic boundary states at finite temperature are constructed as solutions of boundary conditions at T≠0T\neq 0 for bosonic open strings with a constant gauge field FabF_{ab} coupled to the boundary. The construction is done in the framework of thermo field dynamics where a thermal Bogoliubov transformation maps states and operators to finite temperature. Boundary states are given in terms of states from the direct product space between the Fock space of the closed string and another identical copy of it. By analogy with zero temperature, the boundary states heve the interpretation of DpDp-brane at finite temperature. The boundary conditions admit two different solutions. The entropy of the closed string in a DpDp-brane state is computed and analysed. It is interpreted as the entropy of the DpDp-brane at finite temperature.Comment: 21 pages, Latex, revised version with minor corrections and references added, to be published in Phys. Rev.

    The CWKB Method of Particle Production in Periodic Potential

    Full text link
    In this work we study the particle production in time dependent periodic potential using the method of complex time WKB (CWKB) approximation. In the inflationary cosmology at the end of inflationary stage, the potential becomes time dependent as well as periodic. Reheating occurs due to particle production by the oscillating inflaton field. Using CWKB we obtain almost identical results on catastrophic particle production as obtained by others.Comment: 17 pages, latex, 2 figure
    • …
    corecore