48 research outputs found

    High-Field Low-Frequency Spin Dynamics

    Full text link
    The theory of exchange symmetry of spin ordered states is extended to the case of high magnetic field. Low frequency spin dynamics equation for quasi-goldstone mode is derived for two cases of collinear and noncollinear antiferromagnets.Comment: 2 page

    Modes of magnetic resonance of S=1 dimer chain compound NTENP

    Full text link
    The spin dynamics of a quasi one dimensional S=1S=1 bond alternating spin-gap antiferromagnet Ni(C9_9H24_{24}N4_4)NO2_2(ClO4_4) (abbreviated as NTENP) is studied by means of electron spin resonance (ESR) technique. Five modes of ESR transitions are observed and identified: transitions between singlet ground state and excited triplet states, three modes of transitions between spin sublevels of collective triplet states and antiferromagnetic resonance absorption in the field-induced antiferromagnetically ordered phase. Singlet-triplet and intra-triplet modes demonstrate a doublet structure which is due to two maxima in the density of magnon states in the low-frequency range. A joint analysis of the observed spectra and other experimental results allows to test the applicability of the fermionic and bosonic models. We conclude that the fermionic approach is more appropriate for the particular case of NTENP.Comment: 11 pages, 11 figures, published in Phys.Rev.

    Triplet spin resonance of the Haldane compound with interchain coupling

    Full text link
    Spin resonance absorption of the triplet excitations is studied experimentally in the Haldane magnet PbNi2V2O8. The spectrum has features of spin S=1 resonance in a crystal field, with all three components, corresponding to transitions between spin sublevels, being observable. The resonance field is temperature dependent, indicating the renormalization of excitation spectrum in interaction between the triplets. Magnetic resonance frequencies and critical fields of the magnetization curve are consistent with a boson version of the macroscopic field theory [Affleck 1992, Farutin & Marchenko 2007], implying the field induced ordering at the critical field, while contradict the previously used approach of noninteracting spin chains.Comment: 7 pages, 9 figure

    Spin dynamics of the ordered phase of the frustrated antiferromagnet ZnCr2O4: a magnetic resonance study

    Get PDF
    We present an elaborate electron-spin resonance study of the low-energy dynamics and magnetization in the ordered phase of the frustrated spinel ZnCr2O4. We observe several resonance modes corresponding to different structural domains and found that the number of domains can be easily reduced by field-cooling the sample through the transition point. To describe the observed antiferromagnetic resonance spectra it is necessary to take into account an orthorhombic lattice distortion in addition to the earlier reported tetragonal distortion which both appear at the antiferromagnetic phase transition

    Micro-Capsules in Shear Flow

    Full text link
    This paper deals with flow-induced shape transitions of elastic capsules. The state of the art concerning both theory and experiments is briefly reviewed starting with dynamically induced small deformation of initially spherical capsules and the formation of wrinkles on polymerized membranes. Initially non-spherical capsules show tumbling and tank-treading motion in shear flow. Theoretical descriptions of the transition between these two types of motion assuming a fixed shape are at variance with the full capsule dynamics obtained numerically. To resolve the discrepancy, we expand the exact equations of motion for small deformations and find that shape changes play a dominant role. We classify the dynamical phase transitions and obtain numerical and analytical results for the phase boundaries as a function of viscosity contrast, shear and elongational flow rate. We conclude with perspectives on timedependent flow, on shear-induced unbinding from surfaces, on the role of thermal fluctuations, and on applying the concepts of stochastic thermodynamics to these systems.Comment: 34 pages, 15 figure

    Amoeboid motion in confined geometry

    No full text
    International audienceMany eukaryotic cells undergo frequent shape changes (described as amoeboid motion) that enable them to move forward. We investigate the effect of confinement on a minimal model of amoeboid swimmer. A complex picture emerges: (i) The swimmer's nature (i.e., either pusher or puller) can be modified by confinement, thus suggesting that this is not an intrinsic property of the swimmer. This swimming nature transition stems from intricate internal degrees of freedom of membrane deformation. (ii) The swimming speed might increase with increasing confinement before decreasing again for stronger confinements. (iii) A straight amoeoboid swimmer's trajectory in the channel can become unstable, and ample lateral excursions of the swimmer prevail. This happens for both pusher- and puller-type swimmers. For weak confinement, these excursions are symmetric, while they become asymmetric at stronger confinement, whereby the swimmer is located closer to one of the two walls. In this study, we combine numerical and theoretical analyses

    On tensor phase transitions

    No full text
    corecore