42,418 research outputs found

    Superfluid-Insulator Transitions on the Triangular Lattice

    Full text link
    We report on a phenomenological study of superfluid to Mott insulator transitions of bosons on the triangular lattice, focusing primarily on the interplay between Mott localization and geometrical charge frustration at 1/2-filling. A general dual vortex field theory is developed for arbitrary rational filling factors f, based on the appropriate projective symmetry group. At the simple non-frustrated density f=1/3, we uncover an example of a deconfined quantum critical point very similar to that found on the half-filled square lattice. Turning to f=1/2, the behavior is quite different. Here, we find that the low-energy action describing the Mott transition has an emergent nonabelian SU(2)\times U(1) symmetry, not present at the microscopic level. This large nonabelian symmetry is directly related to the frustration-induced quasi-degeneracy between many charge-ordered states not related by microscopic symmetries. Through this ``pseudospin'' SU(2)symmetry, the charged excitations in the insulator close to the Mott transition develop a skyrmion-like character. This leads to an understanding of the recently discovered supersolid phase of the triangular lattice XXZ model (cond-mat/0505258, cond-mat/0505257, cond-mat/0505298) as a ``partially melted'' Mott insulator. The latter picture naturally explains a number of puzzling numerical observations of the properties of this supersolid. Moreover, we predict that the nearby quantum phase transition from this supersolid to the Mott insulator is in the recently-discovered non-compact CP^1 critical universality class (PRB 70, 075104 (2004)). A description of a broad range of other Mott and supersolid states, and a diverse set of quantum critical points between them, is also provided.Comment: 24 pages, 14 figure

    Perturbational approach to the quantum capacity of additive Gaussian quantum channel

    Full text link
    For a quantum channel with additive Gaussian quantum noise, at the large input energy side, we prove that the one shot capacity is achieved by the thermal noise state for all Gaussian state inputs, it is also true for non-Gaussian input in the sense of first order perturbation. For a general case of nn copies input, we show that up to first order perturbation, any non-Gaussian perturbation to the product thermal state input has a less quantum information transmission rate when the input energy tend to infinitive.Comment: 5 page

    The missing ingredient in effective-medium theories: Standard deviations

    Full text link
    Effective-medium theories for electromagnetic constitutive parameters of particulate composite materials are theories of averages. Standard deviations are absent because of the lack of rigorous theories. But ensemble averages and standard deviations can be calculated from a rigorous theory of reflection by planar multilayers. Average reflectivities at all angles of incidence and two orthogonal polarization states for a multilayer composed of two kinds of electrically thin layers agree well with reflectivities for a single layer with the same overall thickness and a volume-weighted average of the relative permittivities of these two components. But the relative standard deviation can be appreciable depending on the angle of incidence and the polarization state of the incident illumination, and increases with increasing difference between the constitutive parameters of the two layers. This suggests that average constitutive parameters obtained from effective-medium theories do not have uniform validity for all calculations in which they might be used.Comment: 12 pages (accepted for publication in Journal of Modern Optics

    Unified Band Theoretic Description of Electronic and Magnetic Properties of Vanadium Dioxide Phases

    Full text link
    The debate about whether the insulating phases of vanadium dioxide (VO2) can be described by band theory or must be described by a theory of strong electron correlations remains unresolved even after decades of research. Energy-band calculations using hybrid exchange functionals or including self-energy corrections account for the insulating or metallic nature of different phases, but have not yet successfully accounted for the observed magnetic orderings. Strongly-correlated theories have had limited quantitative success. Here we report that, by using hard pseudopotentials and an optimized hybrid exchange functional, the energy gaps and magnetic orderings of both monoclinic VO2 phases and the metallic nature of the high-temperature rutile phase are consistent with available experimental data, obviating an explicit role for strong correlations. We also report a potential candidate for the newly-found metallic monoclinic phase and present a detailed magnetic structure of the M2 monoclinic phase

    Determining quantum phase diagrams of topological Kitaev-inspired models on NISQ quantum hardware

    Full text link
    Topological protection is employed in fault-tolerant error correction and in developing quantum algorithms with topological qubits. But, topological protection intrinsic to models being simulated, also robustly protects calculations, even on NISQ hardware. We leverage it by simulating Kitaev-inspired models on IBM quantum computers and accurately determining their phase diagrams. This requires constructing conventional quantum circuits for Majorana braiding to prepare the ground states of Kitaev-inspired models. The entanglement entropy is then measured to calculate the quantum phase boundaries. We show how maintaining particle-hole symmetry when sampling through the Brillouin zone is critical to obtaining high accuracy. This work illustrates how topological protection intrinsic to a quantum model can be employed to perform robust calculations on NISQ hardware, when one measures the appropriate protected quantum properties. It opens the door for further simulation of topological quantum models on quantum hardware available today.Comment: 17 pages and 11 figures final versio

    Ordering in weakly coupled random singlet spin chains

    Full text link
    The influence of bond randomness on long range magnetic ordering in the weakly coupled S = 1/2 antiferromagnetic spin chain materials Cu(py)2(Cl1-xBrx)2 is studied by muon spin rotation and bulk measurements. Disorder is found to have a strong effect on the ordering temperature TN, and an even stronger one on the saturation magnetization m0, but considerably more so in the effectively lower-dimensional Br-rich materials. The observed behavior is attributed to Random Singlet ground states of individual spin chains, but remains in contradiction with chain mean field theory predictions. In this context, we discuss the possibility of a universal distribution of ordered moments in the weakly coupled Random Singlet chains model

    Robust measurement of wave function topology on NISQ quantum computers

    Full text link
    Topological quantum phases of quantum materials are defined through their topological invariants. These topological invariants are quantities that characterize the global geometrical properties of the quantum wave functions and thus are immune to local noise. Here, we present a strategy to measure topological invariants on quantum computers. We show that our strategy can be easily integrated with the variational quantum eigensolver (VQE) so that the topological properties of generic quantum many-body states can be characterized on current quantum hardware. We demonstrate two explicit examples that show how the Chern number can be measured exactly; that is, it is immune to the noise of NISQ machines. This work shows that the robust nature of wave function topology allows NISQ machines to determine topological invariants accurately.Comment: 14 pages, 9 figures, 3 table

    Spin Transfer Torque for Continuously Variable Magnetization

    Full text link
    We report quantum and semi-classical calculations of spin current and spin-transfer torque in a free-electron Stoner model for systems where the magnetization varies continuously in one dimension.Analytic results are obtained for an infinite spin spiral and numerical results are obtained for realistic domain wall profiles. The adiabatic limit describes conduction electron spins that follow the sum of the exchange field and an effective, velocity-dependent field produced by the gradient of the magnetization in the wall. Non-adiabatic effects arise for short domain walls but their magnitude decreases exponentially as the wall width increases. Our results cast doubt on the existence of a recently proposed non-adiabatic contribution to the spin-transfer torque due to spin flip scattering.Comment: 11 pages, 9 figure
    • …
    corecore