85 research outputs found
SSADH variation in primates: Intra- and interspecific data on a gene with a potential role in human cognitive functions
In the present study we focus on the nucleotide and the inferred amino acid variation occurring in humans and other primate species for mitochondrial NAD(+)-dependent succinic semialdehyde dehydrogenase, a gene recently supposed to contribute to cognitive performance in humans. We determined 2527 bp of coding, intronic, and flanking sequences from chimpanzee, bonobo, gorilla, orangutan, gibbon, and macaque. We also resequenced the entire coding sequence on 39 independent chromosomes from Italian families. Four variable coding sites were genotyped in additional populations from Europe, Africa, and Asia. A test for constancy of the nonsynonymous vs. synonymous rates of nucleotide changes revealed that primates are characterized by largely variable d(N)/d(S) ratios. On a background of strong conservation, probably controlled by selective constraints, the lineage leading to humans showed a ratio increased to 0.42. Human polymorphic levels fall in the range reported for other genes, with a pattern of frequency and haplotype structure strongly suggestive of nonneutrality. The comparison with the primate sequences allowed inferring the ancestral state at all variable positions, suggesting that the c.538(C) allele and the associated functional variant is indeed a derived state that is proceeding to fixation. The unexpected pattern of human polymorphism compared to interspecific findings outlines the possibility of a recent positive selection on some variants relevant to new cognitive capabilities unique to humans
Solar Wind Properties and Geospace Impact of Coronal Mass Ejection-Driven Sheath Regions : Variation and Driver Dependence
We present a statistical study of interplanetary conditions and geospace response to 89 coronal mass ejection-driven sheaths observed during Solar Cycles 23 and 24. We investigate in particular the dependencies on the driver properties and variations across the sheath. We find that the ejecta speed principally controls the sheath geoeffectiveness and shows the highest correlations with sheath parameters, in particular in the region closest to the shock. Sheaths of fast ejecta have on average high solar wind speeds, magnetic (B) field magnitudes, and fluctuations, and they generate efficiently strong out-of-ecliptic fields. Slow-ejecta sheaths are considerably slower and have weaker fields and field fluctuations, and therefore they cause primarily moderate geospace activity. Sheaths of weak and strong B field ejecta have distinct properties, but differences in their geoeffectiveness are less drastic. Sheaths of fast and strong ejecta push the subsolar magnetopause significantly earthward, often even beyond geostationary orbit. Slow-ejecta sheaths also compress the magnetopause significantly due to their large densities that are likely a result of their relatively long propagation times and source near the streamer belt. We find the regions near the shock and ejecta leading edge to be the most geoeffective parts of the sheath. These regions are also associated with the largest B field magnitudes, out-of-ecliptic fields, and field fluctuations as well as largest speeds and densities. The variations, however, depend on driver properties. Forecasting sheath properties is challenging due to their variable nature, but the dependence on ejecta properties determined in this work could help to estimate sheath geoeffectiveness through remote-sensing coronal mass ejection observations.Peer reviewe
Influence of large-scale interplanetary structures on the propagation of solar energetic particles: The Multispacecraft event on 2021 October 9
An intense solar energetic particle (SEP) event was observed on 2021 October 9 by multiple spacecraft distributed near the ecliptic plane at heliocentric radial distances R ≲ 1 au and within a narrow range of heliolongitudes. A stream interaction region (SIR), sequentially observed by Parker Solar Probe (PSP) at R = 0.76 au and 48° east from Earth (ϕ = E48°), STEREO-A (at R = 0.96 au, ϕ = E39°), Solar Orbiter (SolO; at R = 0.68 au, ϕ = E15°), BepiColombo (at R = 0.33 au, ϕ = W02°), and near-Earth spacecraft, regulated the observed intensity-time profiles and the anisotropic character of the SEP event. PSP, STEREO-A, and SolO detected strong anisotropies at the onset of the SEP event, which resulted from the fact that PSP and STEREO-A were in the declining-speed region of the solar wind stream responsible for the SIR and from the passage of a steady magnetic field structure by SolO during the onset of the event. By contrast, the intensity-time profiles observed near Earth displayed a delayed onset at proton energies ≳13 MeV and an accumulation of ≲5 MeV protons between the SIR and the shock driven by the parent coronal mass ejection (CME). Even though BepiColombo, STEREO-A, and SolO were nominally connected to the same region of the Sun, the intensity-time profiles at BepiColombo resemble those observed near Earth, with the bulk of low-energy ions also confined between the SIR and the CME-driven shock. This event exemplifies the impact that intervening large-scale interplanetary structures, such as corotating SIRs, have in shaping the properties of SEP events
Multi-purpose InSTRument for Astronomy at Low-resolution: MISTRAL@OHP
MISTRAL is the new Faint Object Spectroscopic Camera mounted at the folded
Cassegrain focus of the 1.93m telescope of Haute-Provence Observatory. We
describe the design and components of the instrument and give some details
about its operation. We emphasise in particular the various observing modes and
the performances of the detector. A short description is also given about the
working environment. Various types of objects, including stars, nebulae,
comets, novae, galaxies have been observed during various test phases to
evaluate the performances of the instrument. The instrument covers the range of
4000 to 8000A with the blue setting, or from 6000 to 10000A with the red
setting, at an average spectral resolution of 700. Its peak efficiency is about
22% at 6000A. In spectroscopy, a limiting magnitude of 19.5 can be achieved for
a point source in one hour with a signal to noise of 3 in the continuum (and
better if emission lines are present). In imaging mode, limiting magnitudes of
20-21 can be obtained in 10-20mn (with average seing conditions of 2.5 arcsec
at OHP). The instrument is very users-friendly and can be put into operations
in less than 15mn (rapid change-over from the other instrument in use) if
required by the science (like for Gamma-Rays Bursts). Some first scientific
results are described for various types of objects, and in particular for the
follow-up of GRBs. While some further improvements are still under way, in
particular to ease the switch from blue to red setting and add more grisms or
filters, MISTRAL is ready for the follow-up of transients and other variable
objects, in the soon-to-come era of e.g. the SVOM satellite and of the Rubin
telescope.Comment: Accepted in A&
The Future of Heliophysics Research through Targeted use of Constellations
This white paper seeks to outline the benefits and challenges of constellations, ranging from the Heliophysics System Observatory, to constellations consisting of a small number of spacecraft, to large-number constellations. In moving toward this constellation era, investments are required by our sponsors to best enable our continued scientific advancement in Solar and Space Physics
Lyman continuum leakage in faint star-forming galaxies at redshift z=3-3.5 probed by gamma-ray bursts
Context. The identification of the sources that reionized the Universe and their specific contribution to this process are key missing pieces of our knowledge of the early Universe. Faint star-forming galaxies may be the main contributors to the ionizing photon budget during the epoch of reionization (EoR), but their escaping photons cannot be detected directly due to inter-galactic medium opacity. Hence, it is essential to characterize the properties of faint galaxies with significant Lyman continuum (LyC) photon leakage up to z 4 to define indirect indicators allowing analogues to be found at the highest redshift.
Aims. Long gamma-ray bursts (LGRB) explode typically in star-forming regions of faint, star-forming galaxies. Through LGRB afterglow spectroscopy it is possible to detect directly LyC photons. Our aim is to use LGRBs as tools to study LyC leakage from faint, star-forming galaxies at high redshift.
Methods. Here we present the observations of LyC emission in the afterglow spectra of GRB 191004B at z = 3:5055, together with those of the other two previously known LyC-emitting LGRB (GRB 050908 at z = 3:3467, and GRB 060607A at z = 3:0749), to determine their LyC escape fraction and compare their properties.
Results. From the afterglow spectrum of GRB 191004B we determine a neutral hydrogen column density at the LGRB redshift of og(NHI/cm.
2) =17:2 0:15, and negligible extinction (AV = 0:03 0:02 mag). The only metal absorption lines detected are C iv and Si iv. In contrast to GRB 050908 and GRB 060607A, the host galaxy of GRB 191004B displays significant Ly emission. From its Ly emission and the non-detection of Balmer emission lines we constrain its star-formation rate (SFR) to 1 SFR 4:7 M yr. 1. We fit the Ly emission with a shell model and find parameters values consistent with the observed ones. The absolute (relative) LyC escape fractions we find for GRB 191004B, GRB 050908 and GRB 060607A are of 0:35+0:10 .0:11 (0:43+0:12
.0:13 ), 0:08+0:05.0:04(0:08+0:05.0:04) and :20+0:05.0:05(0:45+
0:15.0:15), respectively. We compare the LyC escape fraction of LGRBs to the values of other LyC emitters found from the literature, showing that LGRB afterglows can be powerful tools to study LyC escape for faint high-redshift star-forming galaxies. Indeed we could push LyC leakage studies to much higher absolute magnitudes. The host galaxies of the three LGRB presented here have all M1600 > .19:5 mag, with the GRB 060607A host at M1600 > .16 mag. LGRB hosts may therefore be particularly suitable for exploring the ionizing escape fraction in galaxies that are too faint or distant for conventional techniques. Furthermore the time investment is
very small compared to galaxy studies
Preparation, Characterization, and Biological Evaluation of a Hydrophilic Peptide Loaded on PEG-PLGA Nanoparticles
The encapsulation of peptides and proteins in nanosystems has been extensively investigated for masking unfavorable biopharmaceutical properties, including short half-life and poor permeation through biological membranes. Therefore, the aim of this work was to encapsulate a small antimicrobial hydrophilic peptide (H-Ser-Pro-Trp-Thr-NH2, FS10) in PEG-PLGA (polyethylene glycol-poly lactic acid-co-glycolic acid) nanoparticles (Nps) and thereby overcome the common limitations of hydrophilic drugs, which because they facilitate water absorption suffer from rapid degradation. FS10 is structurally related to the well-known RNAIII inhibiting peptide (RIP) and inhibits S. aureus biofilm formation. Various parameters, including different method (double emulsion and nanoprecipitation), pH of the aqueous phase and polymeric composition, were investigated to load FS10 into PEG-PLGA nanoparticles. The combination of different strategies resulted in an encapsulation efficiency of around 25% for both the double emulsion and the nanoprecipitation method. It was found that the most influential parameters were the pH—which tailors the peptides charge—and the polymeric composition. FS10-PEG-PLGA nanoparticles, obtained under optimized parameters, showed size lower than 180 nm with zeta potential values ranging from −11 to −21 mV. In vitro release studies showed that the Nps had an initial burst release of 48–63%, followed by a continuous drug release up to 21 h, probably caused by the porous character of the Nps. Furthermore, transmission electron microscopy (TEM) analysis revealed particles with a spherical morphology and size of around 100 nm. Antimicrobial assay showed that the minimum inhibitory concentration (MIC) of the FS10-loaded Nps, against S. aureus strains, was lower (>128 µg/mL) than that of the free FS10 (>256 µg/mL). The main goal of this work was to develop polymeric drug delivery systems aiming at protecting the peptide from a fast degradation, thus improving its accumulation in the target site and increasing the drug-bacterial membrane interactions
The brightest GRB ever detected: GRB 221009A as a highly luminous event at z = 0.151
Context: The extreme luminosity of gamma-ray bursts (GRBs) makes them
powerful beacons for studies of the distant Universe. The most luminous bursts
are typically detected at moderate/high redshift, where the volume for seeing
such rare events is maximized and the star-formation activity is greater than
at z = 0. For distant events, not all observations are feasible, such as at TeV
energies.
Aims: Here we present a spectroscopic redshift measurement for the
exceptional GRB 221009A, the brightest GRB observed to date with emission
extending well into the TeV regime.
Methods: We used the X-shooter spectrograph at the ESO Very Large Telescope
(VLT) to obtain simultaneous optical to near-IR spectroscopy of the burst
afterglow 0.5 days after the explosion.
Results: The spectra exhibit both absorption and emission lines from material
in a host galaxy at z = 0.151. Thus GRB 221009A was a relatively nearby burst
with a luminosity distance of 745 Mpc. Its host galaxy properties
(star-formation rate and metallicity) are consistent with those of LGRB hosts
at low redshift. This redshift measurement yields information on the energy of
the burst. The inferred isotropic energy release, erg, lies at the high end of the distribution, making GRB 221009A one
of the nearest and also most energetic GRBs observed to date. We estimate that
such a combination (nearby as well as intrinsically bright) occurs between once
every few decades to once per millennium.Comment: 9 pages, 4 figures, submitted to Astronomy & Astrophysic
Influence of Large-scale Interplanetary Structures on the Propagation of Solar Energetic Particles: The Multispacecraft Event on 2021 October 9
An intense solar energetic particle (SEP) event was observed on 2021 October 9 by multiple spacecraft distributed near the ecliptic plane at heliocentric radial distances R less than or similar to 1 au and within a narrow range of heliolongitudes. A stream interaction region (SIR), sequentially observed by Parker Solar Probe (PSP) at R = 0.76 au and 48 degrees east from Earth (phi = E48 degrees), STEREO-A (at R = 0.96 au, phi = E39 degrees), Solar Orbiter (SolO; at R = 0.68 au, phi = E15 degrees), BepiColombo (at R = 0.33 au, phi = W02 degrees), and near-Earth spacecraft, regulated the observed intensity-time profiles and the anisotropic character of the SEP event. PSP, STEREO-A, and SolO detected strong anisotropies at the onset of the SEP event, which resulted from the fact that PSP and STEREO-A were in the declining-speed region of the solar wind stream responsible for the SIR and from the passage of a steady magnetic field structure by SolO during the onset of the event. By contrast, the intensity-time profiles observed near Earth displayed a delayed onset at proton energies greater than or similar to 13 MeV and an accumulation of less than or similar to 5 MeV protons between the SIR and the shock driven by the parent coronal mass ejection (CME). Even though BepiColombo, STEREO-A, and SolO were nominally connected to the same region of the Sun, the intensity-time profiles at BepiColombo resemble those observed near Earth, with the bulk of low-energy ions also confined between the SIR and the CME-driven shock. This event exemplifies the impact that intervening large-scale interplanetary structures, such as corotating SIRs, have in shaping the properties of SEP events
- …