385 research outputs found

    Electron correlation resonances in the transport through a single quantum level

    Full text link
    Correlation effects in the transport properties of a single quantum level coupled to electron reservoirs are discussed theoretically using a non-equilibrium Green functions approach. Our method is based on the introduction of a second-order self-energy associated with the Coulomb interaction that consistently eliminates the pathologies found in previous perturbative calculations. We present results for the current-voltage characteristic illustrating the different correlation effects that may be found in this system, including the Kondo anomaly and Coulomb blockade. We finally discuss the experimental conditions for the simultaneous observation of these effects in an ultrasmall quantum dot.Comment: 4 pages (two columns), 3 figures under reques

    Many-Body Approch to Spin-Dependent Transport in Quantum Dot Systems

    Full text link
    By means of a diagram technique for Hubbard operators we show the existence of a spin-dependent renormalization of the localized levels in an interacting region, e.g. quantum dot, modeled by the Anderson Hamiltonian with two conduction bands. It is shown that the renormalization of the levels with a given spin direction is due to kinematic interactions with the conduction sub-bands of the opposite spin. The consequence of this dressing of the localized levels is a drastically decreased tunneling current for ferromagnetically ordered leads compared to that of paramagnetically ordered leads. Furthermore, the studied system shows a spin-dependent resonant tunneling behaviour for ferromagnetically ordered leads.Comment: 8 pages, 5 figure

    Quantum Mechanics of Multi-Prong Potentials

    Get PDF
    We describe the bound state and scattering properties of a quantum mechanical particle in a scalar NN-prong potential. Such a study is of special interest since these situations are intermediate between one and two dimensions. The energy levels for the special case of NN identical prongs exhibit an alternating pattern of non-degeneracy and (N−1)(N-1) fold degeneracy. It is shown that the techniques of supersymmetric quantum mechanics can be used to generate new solutions. Solutions for prongs of arbitrary lengths are developed. Discussions of tunneling in NN-well potentials and of scattering for piecewise constant potentials are given. Since our treatment is for general values of NN, the results can be studied in the large NN limit. A somewhat surprising result is that a free particle incident on an NN-prong vertex undergoes continuously increased backscattering as the number of prongs is increased.Comment: 17 pages. LATEX. On request, TOP_DRAW files or hard copies available for 7 figure

    Even-odd parity effects in conductance and shot noise of metal-atomic wire-metal(superconducting) junctions

    Full text link
    In this paper, we study the conductance and shot noise in transport through a multi-site system in a two terminal configuration. The dependence of the transport on the number of atoms in the atomic wire is investigated using a tight-binding Hamiltonian and the nonequilibrium Green's function method. In addition to reproducing the even-odd behavior in the transmission probability at the Fermi energy or the linear response conductance in the normal-atomic wire-normal metallic(NAN) junctions, we find the following: (i) The shot noise is larger in the even-numbered atomic wire than in the odd-numbered wire. (ii) The Andreev conductance displays the same even-odd parity effects in the normal-atomic wire-superconducting(NAS) junctions. In general, the conductance is higher in the odd-numbered atomic wire than in the even-numbered wire. When the number of sites (NN) is odd and the atomic wire is mirror symmetric with respect to the center of the atomic wire, the conductance does not depend on the details of the hopping matrices in the atomic wire, but is solely determined by the coupling strength to the two leads. When NN is even, the conductance is sensitive to the values of the hopping matrices.Comment: 12 pages, 9 figure

    Mesoscopic Kondo Effect in an Aharonov-Bohm Ring

    Full text link
    An interacting quantum dot inserted in a mesoscopic ring is investigated. A variational ansatz is employed to describe the ground state of the system in the presence of the Aharonov-Bohm flux. It is shown that, for even number of electrons with the energy level spacing smaller than the Kondo temperature, the persistent current has a value similar to that of a perfect ring with the same radius. On the other hand, for a ring with odd number electrons, the persistent current is found to be strongly suppressed compared to that of an ideal ring, which implies the suppression of the Kondo-resonant transmission. Various aspects of the Kondo-assisted persistent current are discussed.Comment: 4 pages Revtex, 4 Postscript figures, final version to appear in Phys. Rev. Lett. 85, No.26 (Dec. 25, 2000

    Renormalization Group Approach to Non-equilibrium Green Functions in Correlated Impurity Systems

    Full text link
    We present a technique for calculating non-equilibrium Green functions for impurity systems with local interactions. We use an analogy to the calculation of response functions in the x-ray problem.The initial state and the final state problems, which correspond to the situations before and after the disturbance (an electric or magnetic field, for example) is suddenly switched on, are solved with the aid of Wilson's momentum shell renormalization group. The method is illustrated by calculating the non-equilibrium dynamics of the ohmic two-state problem.Comment: 7 pages, 2 figure

    Fermi liquid theory for the Anderson model out of equilibrium

    Full text link
    We study low-energy properties of the Anderson impurity under a finite bias voltage VV using the perturbation theory in UU of Yamada and Yosida in the nonequilibrium Keldysh diagrammatic formalism, and obtain the Ward identities for the derivative of the self-energy with respect to VV. The self-energy is calculated exactly up to terms of order ω2\omega^2, T2T^2 and V2V^2, and the coefficients are defined with respect to the equilibrium ground state. From these results, the nonlinear response of the current through the impurity has been deduced up to order V3V^3.Comment: 8 pages, 1 figur

    Quantum interference effects in p-Si1−xGex quantum wells

    Get PDF
    Quantum interference effects, such as weak localization and electronelectron interaction (EEI), have been investigated in magnetic fields up to 11 T for hole gases in a set of Si1−xGex quantum wells with 0.13 < x < 0.95. The temperature dependence of the hole phase relaxation time has been extracted from the magneto-resistance between 35 mK and 10 K. The spin-orbit effects that can be described within the Rashba model were observed in low magnetic fields. A quadratic negative magneto-resistance was observed in strong magnetic fields, due to the EEI effect. The hole-phonon scattering time was determined from hole overheating in a strong magnetic field

    Kondo effect in coupled quantum dots under magnetic fields

    Full text link
    The Kondo effect in coupled quantum dots is investigated theoretically under magnetic fields. We show that the magnetoconductance (MC) illustrates peak structures of the Kondo resonant spectra. When the dot-dot tunneling coupling VCV_C is smaller than the dot-lead coupling Δ\Delta (level broadening), the Kondo resonant levels appear at the Fermi level (EFE_F). The Zeeman splitting of the levels weakens the Kondo effect, which results in a negative MC. When VCV_{C} is larger than Δ\Delta, the Kondo resonances form bonding and anti-bonding levels, located below and above EFE_F, respectively. We observe a positive MC since the Zeeman splitting increases the overlap between the levels at EFE_F. In the presence of the antiferromagnetic spin coupling between the dots, the sign of MC can change as a function of the gate voltage.Comment: 6 pages, 3 figure

    Magnetotransport through a strongly interacting quantum dot

    Full text link
    We study the effect of a magnetic field on the conductance through a strongly interacting quantum dot by using the finite temperature extension of Wilson's numerical renormalization group method to dynamical quantities. The quantum dot has one active level for transport and is modelled by an Anderson impurity attached to left and right electron reservoirs. Detailed predictions are made for the linear conductance and the spin-resolved conductance as a function of gate voltage, temperature and magnetic field strength. A strongly coupled quantum dot in a magnetic field acts as a spin filter which can be tuned by varying the gate voltage. The largest spin-filtering effect is found in the range of gate voltages corresponding to the mixed valence regime of the Anderson impurity model.Comment: Revised version, to appear in PRB, 4 pages, 4 figure
    • …
    corecore