899 research outputs found

    ИсслСдования Π»Π΅Π΄Π½ΠΈΠΊΠΎΠ² Π½Π° основС акустичСских ΠΈΠ·ΠΌΠ΅Ρ€Π΅Π½ΠΈΠΉ

    Get PDF
    The possibility of glacier ice flow studies using the method of acoustic emission (AE) in frequency range from 15 Hz to 20 kHz has been considered. A portable acoustic line system has been developed and a number of methodological issues (mounting of acoustic sensors into glacial ice, their location, reliability of acoustic coupling, etc.) have been solved. Acoustic studies of glacial ice have been performed; rock fall effect, ice cracking and ice movement on bedrock have been simulated. Correspondences of AE parameters to specific sources have been identified. The results of acoustic studies on Aldegondabreen (Spitsbergen), Central Tuyuksu and Molodezhny glaciers (northern Tien Shan) have been summarized. The dependence of the adhesive strength of ice with smooth substrate (serpentenite) on the shear rate has been considered; the effect of tor-shaped obstacle on shear force has been estimated. It is shown that the acoustic effects at cohesive ice failure on obstacles are similar to the observed natural acoustic vibrations generated in glaciers from distant sources. The results might be applied in development of the mobile ice lab and system for remote acoustic monitoring the processes in the bottom layers of glaciers.РассмотрСны возмоТности исслСдования двиТСния льда Π² Π»Π΅Π΄Π½ΠΈΠΊΠ΅ ΠΈ Π΅Π³ΠΎ Π°Π½Π°Π»ΠΈΠ·Π° с ΠΏΠΎΠΌΠΎΡ‰ΡŒΡŽ ΠΌΠ΅Ρ‚ΠΎΠ΄Π° акустичСской эмиссии Π² Π΄ΠΈΠ°ΠΏΠ°Π·ΠΎΠ½Π΅ частот 15–20Β ΠΊΠ“Ρ†. Π‘ΠΎΠ·Π΄Π°Π½Π° портативная ΠΈΠ·ΠΌΠ΅Ρ€ΠΈΡ‚Π΅Π»ΡŒΠ½Π°Ρ акустичСская линия ΠΈ Ρ€Π΅ΡˆΡ‘Π½ ряд мСтодичСских вопросов. Π’Ρ‹ΠΏΠΎΠ»Π½Π΅Π½Ρ‹ акустичСскиС исслСдования Π»Π΅Π΄Π½ΠΈΠΊΠΎΠ²ΠΎΠ³ΠΎ льда, ΠΈΠΌΠΈΡ‚ΠΈΡ€ΠΎΠ²Π°Π½Ρ‹ ΠΊΠ°ΠΌΠ½Π΅ΠΏΠ°Π΄, Ρ‚Ρ€Π΅Ρ‰ΠΈΠ½ΠΎΠΎΠ±Ρ€Π°Π·ΠΎΠ²Π°Π½ΠΈΠ΅ Π² Π»Π΅Π΄Π½ΠΈΠΊΠ΅ ΠΈ Π΅Π³ΠΎ Π΄Π²ΠΈΠΆΠ΅Π½ΠΈΠ΅ ΠΏΠΎ Π»ΠΎΠΆΡƒ. УстановлСны соотвСтствия ΠΏΠ°Ρ€Π°ΠΌΠ΅Ρ‚Ρ€ΠΎΠ² акустичСской эмиссии ΠΎΠΏΡ€Π΅Π΄Π΅Π»Ρ‘Π½Π½ΠΎΠΌΡƒ источнику. ΠžΠ±ΠΎΠ±Ρ‰Π΅Π½Ρ‹ Ρ€Π΅Π·ΡƒΠ»ΡŒΡ‚Π°Ρ‚Ρ‹ акустичСских исслСдований Π½Π° Π»Π΅Π΄Π½ΠΈΠΊΠ°Ρ… АльдСгонда (Π¨ΠΏΠΈΡ†Π±Π΅Ρ€Π³Π΅Π½), Π¦Π΅Π½Ρ‚Ρ€Π°Π»ΡŒΠ½Ρ‹ΠΉ Π’ΡƒΡŽΠΊΡΡƒ ΠΈ ΠœΠΎΠ»ΠΎΠ΄Ρ‘ΠΆΠ½Ρ‹ΠΉ (Π‘Π΅Π²Π΅Ρ€Π½Ρ‹ΠΉ Вянь-Шань). РассмотрСна Π·Π°Π²ΠΈΡΠΈΠΌΠΎΡΡ‚ΡŒ Π°Π΄Π³Π΅Π·ΠΈΠΎΠ½Π½ΠΎΠΉ прочности соСдинСния льда с Π³Π»Π°Π΄ΠΊΠΎΠΉ ΠΏΠΎΠ΄Π»ΠΎΠΆΠΊΠΎΠΉ (сСрпСнтинит) ΠΎΡ‚ скорости сдвига, ΠΎΡ†Π΅Π½Π΅Π½ΠΎ влияниС прСпятствия Π² Π²ΠΈΠ΄Π΅ Ρ‚ΠΎΡ€Π° Π½Π° силу сдвига. В собствСнных акустичСских спСктрах исслСдованных Π»Π΅Π΄Π½ΠΈΠΊΠΎΠ² ΠΎΠ±Π½Π°Ρ€ΡƒΠΆΠ΅Π½Ρ‹ акустичСскиС эффСкты, Ρ…Π°Ρ€Π°ΠΊΡ‚Π΅Ρ€Π½Ρ‹Π΅ для Ρ€Π°Π·Ρ€ΡƒΡˆΠ΅Π½ΠΈΡ льда Π½Π° прСпятствиях. ΠŸΠΎΠ»ΡƒΡ‡Π΅Π½Π½Ρ‹Π΅ Ρ€Π΅Π·ΡƒΠ»ΡŒΡ‚Π°Ρ‚Ρ‹ ΠΌΠΎΠΆΠ½ΠΎ ΠΈΡΠΏΠΎΠ»ΡŒΠ·ΠΎΠ²Π°Ρ‚ΡŒ для создания мобильной Π»Π΅Π΄Π½ΠΈΠΊΠΎΠ²ΠΎΠΉ Π»Π°Π±ΠΎΡ€Π°Ρ‚ΠΎΡ€ΠΈΠΈ ΠΈ систСмы дистанционного акустичСского ΠΌΠΎΠ½ΠΈΡ‚ΠΎΡ€ΠΈΠ½Π³Π° процСссов Π² ΠΏΡ€ΠΈΠ΄ΠΎΠ½Π½Ρ‹Ρ… слоях Π»Π΅Π΄Π½ΠΈΠΊΠ°

    Measurement of the e+eβˆ’β†’K+Kβˆ’Ο€+Ο€βˆ’e^+e^- \to K^+K^-\pi^+\pi^- cross section with the CMD-3 detector at the VEPP-2000 collider

    Get PDF
    The process e+eβˆ’β†’K+Kβˆ’Ο€+Ο€βˆ’e^+e^- \to K^+K^-\pi^+\pi^- has been studied in the center-of-mass energy range from 1500 to 2000\,MeV using a data sample of 23 pbβˆ’1^{-1} collected with the CMD-3 detector at the VEPP-2000 e+eβˆ’e^+e^- collider. Using about 24000 selected events, the e+eβˆ’β†’K+Kβˆ’Ο€+Ο€βˆ’e^+e^- \to K^+K^-\pi^+\pi^- cross section has been measured with a systematic uncertainty decreasing from 11.7\% at 1500-1600\,MeV to 6.1\% above 1800\,MeV. A preliminary study of K+Kβˆ’Ο€+Ο€βˆ’K^+K^-\pi^+\pi^- production dynamics has been performed

    Study of the process e+eβˆ’β†’ppΛ‰e^+e^-\to p\bar{p} in the c.m. energy range from threshold to 2 GeV with the CMD-3 detector

    Get PDF
    Using a data sample of 6.8 pbβˆ’1^{-1} collected with the CMD-3 detector at the VEPP-2000 e+eβˆ’e^+e^- collider we select about 2700 events of the e+eβˆ’β†’ppΛ‰e^+e^- \to p\bar{p} process and measure its cross section at 12 energy ponts with about 6\% systematic uncertainty. From the angular distribution of produced nucleons we obtain the ratio ∣GE/GM∣=1.49Β±0.23Β±0.30|G_{E}/G_{M}| = 1.49 \pm 0.23 \pm 0.30

    ЀизичСскоС ΠΌΠΎΠ΄Π΅Π»ΠΈΡ€ΠΎΠ²Π°Π½ΠΈΠ΅ ΠΊΠΎΠ½Ρ‚Π°ΠΊΡ‚Π° Π»Π΅Π΄Π½ΠΈΠΊΠ° с Π»ΠΎΠΆΠ΅ΠΌ (экспСримСнты)

    Get PDF
    Studies of the adhesive strength of glacial ice connection with bedrock has been studied using the analysis of the amplitude-frequency characteristics of acoustic emission (AE) in the frequency range from 15Β Hz to 20,000Β Hz. Identification of signal source on bed is based on physical modeling of adhesive ice fracture at the complex shear and patterns of elastic waves propagation in the ice using data on ice thickness of the ice and its acoustic properties. The experimental dependence of the ice and serpentinite substrate adhesive strength with temperature (from 0Β Β°C to βˆ’30Β Β°C) has been obtained at constraint axial shear. It is shown that the destruction of adhesive ice contact with substrate begins long before the maximum shear stress achieved, and AE signals in the coordinates amplitude-frequency-time have been obtained for the for static friction and sliding parts of deformation curves. Influence of shear to normal stresses ratio on the adhesive ice/substrate strength has been shown. Influence of the ratio of longitudinal and transverse shear stresses on the adhesive bond strength of ice to the substrate has been shown. The natural glacier spectra revealed periodic reduction of AE signals frequency in the middle range of frequencies. The similar effect of AE signals shifting along the frequency axis to the low frequency domain was obtained by testing of freshwater ice samples and related with expansion of the destruction scale. Practical application of the strain AE results for remote determination of the local glacial stability and for studies of glacier ice mechanics is discussed.ΠŸΡ€ΠΎΠ²Π΅Π΄Π΅Π½Ρ‹ комплСксныС исслСдования Π°Π΄Π³Π΅Π·ΠΈΠΎΠ½Π½ΠΎΠΉ прочности соСдинСния льда с ΠΏΠΎΠ΄Π»ΠΎΠΆΠΊΠΎΠΉ, ΠΏΡ€Π΅Π΄ΡƒΡΠΌΠ°Ρ‚Ρ€ΠΈΠ²Π°ΡŽΡ‰ΠΈΠ΅ Π°Π½Π°Π»ΠΈΠ· Π°ΠΌΠΏΠ»ΠΈΡ‚ΡƒΠ΄Π½ΠΎ-частотных характСристик сигналов акустичСской эмиссии (АЭ) Π² Π΄ΠΈΠ°ΠΏΠ°Π·ΠΎΠ½Π΅ частот ΠΎΡ‚ 15 Π΄ΠΎ 20 тыс.Β Π“Ρ†. Π”Π°Π½Π½Ρ‹Π΅ физичСского модСлирования процСссов Π°Π΄Π³Π΅Π·ΠΈΠΎΠ½Π½ΠΎΠ³ΠΎ Ρ€Π°Π·Ρ€ΡƒΡˆΠ΅Π½ΠΈΡ льда ΠΏΠΎΠ΄Ρ‚Π²Π΅Ρ€ΠΆΠ΄Π΅Π½Ρ‹ Ρ€Π΅Π·ΡƒΠ»ΡŒΡ‚Π°Ρ‚Π°ΠΌΠΈ ΠΏΠΎΠ»Π΅Π²Ρ‹Ρ… исслСдований Π»Π΅Π΄Π½ΠΈΠΊΠΎΠ² Π¦Π΅Π½Ρ‚Ρ€Π°Π»ΡŒΠ½Ρ‹ΠΉ Π’ΡƒΡŽΠΊΡΡƒ ΠΈ ΠœΠΎΠ»ΠΎΠ΄Π΅ΠΆΠ½Ρ‹ΠΉ Π² Заилийском Алатау. ΠŸΠΎΠ»ΡƒΡ‡Π΅Π½Π° ΡΠΊΡΠΏΠ΅Ρ€ΠΈΠΌΠ΅Π½Ρ‚Π°Π»ΡŒΠ½Π°Ρ Π·Π°Π²ΠΈΡΠΈΠΌΠΎΡΡ‚ΡŒ Π°Π΄Π³Π΅Π·ΠΈΠΎΠ½Π½ΠΎΠΉ прочности соСдинСния льда с сСрпСнтинитом (ΠΏΠΎΠ΄Π»ΠΎΠΆΠΊΠΎΠΉ) ΠΎΡ‚ Ρ‚Π΅ΠΌΠΏΠ΅Ρ€Π°Ρ‚ΡƒΡ€Ρ‹ (ΠΎΡ‚ 0 Π΄ΠΎ βˆ’25Β Β°Π‘) ΠΏΡ€ΠΈ осСвом сдвигС Π² условиях стСснСния. Показано, Ρ‡Ρ‚ΠΎ Π°Π΄Π³Π΅Π·ΠΈΠΎΠ½Π½Ρ‹ΠΉ ΠΊΠΎΠ½Ρ‚Π°ΠΊΡ‚ лёд–подлоТка Π½Π°Ρ‡ΠΈΠ½Π°Π΅Ρ‚ Ρ€Π°Π·Ρ€ΡƒΡˆΠ°Ρ‚ΡŒΡΡ Π½Π°ΠΌΠ½ΠΎΠ³ΠΎ Ρ€Π°Π½ΡŒΡˆΠ΅ достиТСния ΠΌΠ°ΠΊΡΠΈΠΌΠ°Π»ΡŒΠ½Ρ‹Ρ… напряТСний сдвига, ΠΏΡ€ΠΈΡ‡Ρ‘ΠΌ для участков Π΄Π΅Ρ„ΠΎΡ€ΠΌΠ°Ρ†ΠΈΠΎΠ½Π½Ρ‹Ρ… ΠΊΡ€ΠΈΠ²Ρ‹Ρ… (Ρ‚Ρ€Π΅Π½ΠΈΠ΅ покоя ΠΈ скольТСния) ΠΏΠΎΠ»ΡƒΡ‡Π΅Π½Ρ‹ Π΄ΠΈΠ°Π³Ρ€Π°ΠΌΠΌΡ‹ сигналов АЭ Π² ΠΊΠΎΠΎΡ€Π΄ΠΈΠ½Π°Ρ‚Π°Ρ… амплитуда–частота–врСмя. Показано влияниС ΡΠΎΠΎΡ‚Π½ΠΎΡˆΠ΅Π½ΠΈΡ ΠΏΡ€ΠΎΠ΄ΠΎΠ»ΡŒΠ½Ρ‹Ρ… ΠΈ ΠΏΠΎΠΏΠ΅Ρ€Π΅Ρ‡Π½Ρ‹Ρ… сдвиговых напряТСний Π½Π° Π°Π΄Π³Π΅Π·ΠΈΠΎΠ½Π½ΡƒΡŽ ΠΏΡ€ΠΎΡ‡Π½ΠΎΡΡ‚ΡŒ соСдинСния льда с ΠΏΠΎΠ΄Π»ΠΎΠΆΠΊΠΎΠΉ. Π’ срСднСм Π΄ΠΈΠ°ΠΏΠ°Π·ΠΎΠ½Π΅ частот собствСнных акустичСских спСктров Π»Π΅Π΄Π½ΠΈΠΊΠΎΠ² установлСно пСриодичСскоС ΡƒΠΌΠ΅Π½ΡŒΡˆΠ΅Π½ΠΈΠ΅ частоты заполнСния сигналов АЭ. Аналогичный эффСкт смСщСния сигналов АЭ ΠΏΠΎ оси частот Π² сторону низкочастотного Π΄ΠΈΠ°ΠΏΠ°Π·ΠΎΠ½Π° ΠΏΠΎΠ»ΡƒΡ‡Π΅Π½ ΠΏΡ€ΠΈ испытании ΠΎΠ±Ρ€Π°Π·Ρ†ΠΎΠ² прСсноводного льда ΠΈ обусловлСн Ρ€Π°ΡΡˆΠΈΡ€Π΅Π½ΠΈΠ΅ΠΌ ΠΌΠ°ΡΡˆΡ‚Π°Π±Π° Ρ€Π°Π·Ρ€ΡƒΡˆΠ΅Π½ΠΈΡ. Π Π΅Π·ΡƒΠ»ΡŒΡ‚Π°Ρ‚Ρ‹ исслСдований ΠΌΠΎΠΆΠ½ΠΎ ΠΈΡΠΏΠΎΠ»ΡŒΠ·ΠΎΠ²Π°Ρ‚ΡŒ для дистанционного изучСния ΠΊΠΈΠ½Π΅Ρ‚ΠΈΠΊΠΈ накоплСния Ρ‚Ρ€Π΅Ρ‰ΠΈΠ½ Π² ΠΏΡ€ΠΈΠ΄ΠΎΠ½Π½Ρ‹Ρ… слоях Π»Π΅Π΄Π½ΠΈΠΊΠΎΠ²ΠΎΠ³ΠΎ льда

    Measurement of the Pion Form Factor in the Energy Range 1.04-1.38 GeV with the CMD-2 Detector

    Full text link
    The cross section for the process e+eβˆ’β†’Ο€+Ο€βˆ’e^+e^-\to\pi^+\pi^- is measured in the c.m. energy range 1.04-1.38 GeV from 995 000 selected collinear events including 860000 e+eβˆ’e^+e^- events, 82000 ΞΌ+ΞΌβˆ’\mu^+\mu^- events, and 33000 Ο€+Ο€βˆ’\pi^+\pi^- events. The systematic and statistical errors of measuring the pion form factor are equal to 1.2-4.2 and 5-13%, respectively.Comment: 5 pages, 2 figure

    The Determination of alpha_s from Tau Decays Revisited

    Full text link
    We revisit the determination of alpha_s(m_tau) using a fit to inclusive tau hadronic spectral moments in light of (1) the recent calculation of the fourth-order perturbative coefficient K_4 in the expansion of the Adler function, (2) new precision measurements from BABAR of e+e- annihilation cross sections, which decrease the uncertainty in the separation of vector and axial-vector spectral functions, and (3) improved results from BABAR and Belle on tau branching fractions involving kaons. We estimate that the fourth-order perturbative prediction reduces the theoretical uncertainty, introduced by the truncation of the series, by 20% with respect to earlier determinations. We discuss to some detail the perturbative prediction and show that the effect of the incomplete knowledge of the series is reduced by using the so-called contour-improved calculation, as opposed to fixed-order perturbation theory which manifests convergence problems. The corresponding theoretical uncertainties are studied at the tau and Z mass scales. Nonperturbative contributions extracted from the most inclusive fit are small, in agreement with earlier determinations. Systematic effects from quark-hadron duality violation are estimated with simple models and found to be within the quoted systematic errors. The fit gives alpha_s(m_tau) = 0.344 +- 0.005 +- 0.007, where the first error is experimental and the second theoretical. After evolution to M_Z we obtain alpha_s(M_Z) = 0.1212 +- 0.0005 +- 0.0008 +- 0.0005, where the errors are respectively experimental, theoretical and due to the evolution. The result is in agreement with the corresponding NNNLO value derived from essentially the Z width in the global electroweak fit. The alpha_s(M_Z) determination from tau decays is the most precise one to date.Comment: 22 pages, 7 figure
    • …
    corecore