12,988 research outputs found

    Premise Selection for Mathematics by Corpus Analysis and Kernel Methods

    Get PDF
    Smart premise selection is essential when using automated reasoning as a tool for large-theory formal proof development. A good method for premise selection in complex mathematical libraries is the application of machine learning to large corpora of proofs. This work develops learning-based premise selection in two ways. First, a newly available minimal dependency analysis of existing high-level formal mathematical proofs is used to build a large knowledge base of proof dependencies, providing precise data for ATP-based re-verification and for training premise selection algorithms. Second, a new machine learning algorithm for premise selection based on kernel methods is proposed and implemented. To evaluate the impact of both techniques, a benchmark consisting of 2078 large-theory mathematical problems is constructed,extending the older MPTP Challenge benchmark. The combined effect of the techniques results in a 50% improvement on the benchmark over the Vampire/SInE state-of-the-art system for automated reasoning in large theories.Comment: 26 page

    Anderson impurity model in nonequilibrium: analytical results versus quantum Monte Carlo data

    Full text link
    We analyze the spectral function of the single-impurity two-terminal Anderson model at finite voltage using the recently developed diagrammatic quantum Monte Carlo technique as well as perturbation theory. In the (particle-hole-)symmetric case we find an excellent agreement of the numerical data with the perturbative results of second order up to interaction strengths U/Γ2U/\Gamma \approx 2, where Γ\Gamma is the transparency of the impurity-electrode interface. The analytical results are obtained in form of the nonequilibrium self-energy for which we present explicit formulas in the closed form at arbitrary bias voltage. We observe an increase of the spectral density around zero energy brought about by the Kondo effect. Our analysis suggests that a finite applied voltage VV acts as an effective temperature of the system. We conclude that at voltages significantly larger than the equilibrium Kondo temperature there is a complete suppression of the Kondo effect and no resonance splitting can be observed. We confirm this scenario by comparison of the numerical data with the perturbative results.Comment: 8 pages, 6 figure

    Electronic and atomic shell structure in aluminum nanowires

    Get PDF
    We report experiments on aluminum nanowires in ultra-high vacuum at room temperature that reveal a periodic spectrum of exceptionally stable structures. Two "magic" series of stable structures are observed: At low conductance, the formation of stable nanowires is governed by electronic shell effects whereas for larger contacts atomic packing dominates. The crossover between the two regimes is found to be smooth. A detailed comparison of the experimental results to a theoretical stability analysis indicates that while the main features of the observed electron-shell structure are similar to those of alkali and noble metals, a sequence of extremely stable wires plays a unique role in Aluminum. This series appears isolated in conductance histograms and can be attributed to "superdeformed" non-axisymmetric nanowires.Comment: 15 pages, 9 figure

    Rabi flopping between ground and Rydberg states with dipole-dipole atomic interactions

    Full text link
    We demonstrate Rabi flopping of small numbers of 87Rb\rm{^{87}Rb} atoms between ground and Rydberg states with n43n\le 43. Coherent population oscillations are observed for single atom flopping, while the presence of two or more atoms decoheres the oscillations. We show that these observations are consistent with van der Waals interactions of Rydberg atoms.Comment: 4 pages, 6 figure

    Spontaneous generation of spin-orbit coupling in magnetic dipolar Fermi gases

    Full text link
    The stability of an unpolarized two-component dipolar Fermi gas is studied within mean-field theory. Besides the known instability towards spontaneous magnetization with Fermi sphere deformation, another instability towards spontaneous formation of a spin-orbit coupled phase with a Rashba-like spin texture is found. A phase diagram is presented and consequences are briefly discussed

    Large-Scale Magnetic Fields, Dark Energy and QCD

    Full text link
    Cosmological magnetic fields are being observed with ever increasing correlation lengths, possibly reaching the size of superclusters, therefore disfavouring the conventional picture of generation through primordial seeds later amplified by galaxy-bound dynamo mechanisms. In this paper we put forward a fundamentally different approach that links such large-scale magnetic fields to the cosmological vacuum energy. In our scenario the dark energy is due to the Veneziano ghost (which solves the U(1)AU(1)_A problem in QCD). The Veneziano ghost couples through the triangle anomaly to the electromagnetic field with a constant which is unambiguously fixed in the standard model. While this interaction does not produce any physical effects in Minkowski space, it triggers the generation of a magnetic field in an expanding universe at every epoch. The induced energy of the magnetic field is thus proportional to cosmological vacuum energy: ρEMB2(α4π)2ρDE\rho_{EM}\simeq B^2 \simeq (\frac{\alpha}{4\pi})^2 \rho_{DE}, ρDE\rho_{DE} hence acting as a source for the magnetic energy ρEM\rho_{EM}. The corresponding numerical estimate leads to a magnitude in the nG range. There are two unique and distinctive predictions of our proposal: an uninterrupted active generation of Hubble size correlated magnetic fields throughout the evolution of the universe; the presence of parity violation on the enormous scales 1/H1/H, which apparently has been already observed in CMB. These predictions are entirely rooted into the standard model of particle physics.Comment: jhep style, 22 pages, v2 with updated estimates and extended discussion on parity violation, v3 as published (references updated

    Perturbation of magnetostatic modes observed by ferromagnetic resonance force microscopy

    Get PDF
    Magnetostatic modes of yttrium iron garnet (YIG) films are investigated by ferromagnetic resonance force microscopy. A thin-film "probe" magnet at the tip of a compliant cantilever introduces a local inhomogeneity in the internal field of the YIG sample. This influences the shape of the sample's magnetostatic modes, thereby measurably perturbing the strength of the force coupled to the cantilever. We present a theoretical model that explains these observations; it shows that the tip-induced variation of the internal field creates either a local "potential barrier" or "potential well" for the magnetostatic waves. The data and model together indicate that local magnetic imaging of ferromagnets is possible, even in the presence of long-range spin coupling, through the introduction of localized magnetostatic modes predicted to arise from sufficiently strong tip fields
    corecore