846 research outputs found

    Can non-private channels transmit quantum information?

    Full text link
    We study the power of quantum channels with little or no capacity for private communication. Because privacy is a necessary condition for quantum communication, one might expect that such channels would be of little use for transmitting quantum states. Nevertheless, we find strong evidence that there are pairs of such channels that, when used together, can transmit far more quantum information than the sum of their individual private capacities. Because quantum transmissions are necessarily private, this would imply a large violation of additivity for the private capacity. Specifically, we present channels which display either (1) A large joint quantum capacity but very small individual private capacities or (2) a severe violation of additivity for the Holevo information.Comment: We both think so. 4 pages and 3 figures explain wh

    Finite states in four dimensional quantum gravity. The isotropic minisuperspace Asktekar--Klein--Gordon model

    Get PDF
    In this paper we construct the generalized Kodama state for the case of a Klein--Gordon scalar field coupled to Ashtekar variables in isotropic minisuperspace by a new method. The criterion for finiteness of the state stems from a minisuperspace reduction of the quantized full theory, rather than the conventional techniques of reduction prior to quantization. We then provide a possible route to the reproduction of a semiclassical limit via these states. This is the result of a new principle of the semiclassical-quantum correspondence (SQC), introduced in the first paper in this series. Lastly, we examine the solution to the minisuperspace case at the semiclassical level for an isotropic CDJ matrix neglecting any quantum corrections and examine some of the implications in relation to results from previous authors on semiclassical orbits of spacetime, including inflation. It is suggested that the application of nonperturbative quantum gravity, by way of the SQC, might potentially lead to some predictions testable below the Planck scale.Comment: 26 pages. Accepted for publication by Class. Quantum Grav. journa

    The linearization of the Kodama state

    Full text link
    We study the question of whether the linearization of the Kodama state around classical deSitter spacetime is normalizable in the inner product of the theory of linearized gravitons on deSitter spacetime. We find the answer is no in the Lorentzian theory. However, in the Euclidean theory the corresponding linearized Kodama state is delta-functional normalizable. We discuss whether this result invalidates the conjecture that the full Kodama state is a good physical state for quantum gravity with positive cosmological constant.Comment: 14 pages, statement on the corresponding Yang-Mills case correcte

    Link Invariants of Finite Type and Perturbation Theory

    Full text link
    The Vassiliev-Gusarov link invariants of finite type are known to be closely related to perturbation theory for Chern-Simons theory. In order to clarify the perturbative nature of such link invariants, we introduce an algebra V_infinity containing elements g_i satisfying the usual braid group relations and elements a_i satisfying g_i - g_i^{-1} = epsilon a_i, where epsilon is a formal variable that may be regarded as measuring the failure of g_i^2 to equal 1. Topologically, the elements a_i signify crossings. We show that a large class of link invariants of finite type are in one-to-one correspondence with homogeneous Markov traces on V_infinity. We sketch a possible application of link invariants of finite type to a manifestly diffeomorphism-invariant perturbation theory for quantum gravity in the loop representation.Comment: 11 page

    Reconstructing Quantum Geometry from Quantum Information: Spin Networks as Harmonic Oscillators

    Full text link
    Loop Quantum Gravity defines the quantum states of space geometry as spin networks and describes their evolution in time. We reformulate spin networks in terms of harmonic oscillators and show how the holographic degrees of freedom of the theory are described as matrix models. This allow us to make a link with non-commutative geometry and to look at the issue of the semi-classical limit of LQG from a new perspective. This work is thought as part of a bigger project of describing quantum geometry in quantum information terms.Comment: 16 pages, revtex, 3 figure

    Development of a formalism of movable cellular automaton method for numerical modeling of fracture of heterogeneous elastic-plastic materials

    Get PDF
    A general approach to realization of models of elasticity, plasticity and fracture of heterogeneousmaterials within the framework of particle-based numerical methods is proposed in the paper. It is based onbuilding many-body forces of particle interaction, which provide response of particle ensemble correctlyconforming to the response (including elastic-plastic behavior and fracture) of simulated solids. Implementationof proposed approach within particle-based methods is demonstrated by the example of the movable cellularautomaton (MCA) method, which integrates the possibilities of particle-based discrete element method (DEM)and cellular automaton methods. Emergent advantages of the developed approach to formulation of manybodyinteraction are discussed. Main of them are its applicability to various realizations of the concept ofdiscrete elements and a possibility to realize various rheological models (including elastic-plastic or visco-elasticplastic)and models of fracture to study deformation and fracture of solid-phase materials and media.Capabilities of particle-based modeling of heterogeneous solids are demonstrated by the problem of simulationof deformation and fracture of particle-reinforced metal-ceramic composites

    A perspective on the landscape problem

    Full text link
    I discuss the historical roots of the landscape problem and propose criteria for its successful resolution. This provides a perspective to evaluate the possibility to solve it in several of the speculative cosmological scenarios under study including eternal inflation, cosmological natural selection and cyclic cosmologies.Comment: Invited contribution for a special issue of Foundations of Physics titled: Forty Years Of String Theory: Reflecting On the Foundations. 31 pages, no figure

    Quantum symmetry, the cosmological constant and Planck scale phenomenology

    Full text link
    We present a simple algebraic argument for the conclusion that the low energy limit of a quantum theory of gravity must be a theory invariant, not under the Poincare group, but under a deformation of it parameterized by a dimensional parameter proportional to the Planck mass. Such deformations, called kappa-Poincare algebras, imply modified energy-momentum relations of a type that may be observable in near future experiments. Our argument applies in both 2+1 and 3+1 dimensions and assumes only 1) that the low energy limit of a quantum theory of gravity must involve also a limit in which the cosmological constant is taken very small with respect to the Planck scale and 2) that in 3+1 dimensions the physical energy and momenta of physical elementary particles is related to symmetries of the full quantum gravity theory by appropriate renormalization depending on Lambda l^2_{Planck}. The argument makes use of the fact that the cosmological constant results in the symmetry algebra of quantum gravity being quantum deformed, as a consequence when the limit \Lambda l^2_{Planck} -> 0 is taken one finds a deformed Poincare invariance. We are also able to isolate what information must be provided by the quantum theory in order to determine which presentation of the kappa-Poincare algebra is relevant for the physical symmetry generators and, hence, the exact form of the modified energy-momentum relations. These arguments imply that Lorentz invariance is modified as in proposals for doubly special relativity, rather than broken, in theories of quantum gravity, so long as those theories behave smoothly in the limit the cosmological constant is taken to be small.Comment: LaTex, 19 page

    Constraints on the quantum gravity scale from kappa - Minkowski spacetime

    Full text link
    We compare two versions of deformed dispersion relations (energy vs momenta and momenta vs energy) and the corresponding time delay up to the second order accuracy in the quantum gravity scale (deformation parameter). A general framework describing modified dispersion relations and time delay with respect to different noncommutative kappa -Minkowski spacetime realizations is firstly proposed here and it covers all the cases introduced in the literature. It is shown that some of the realizations provide certain bounds on quadratic corrections, i.e. on quantum gravity scale, but it is not excluded in our framework that quantum gravity scale is the Planck scale. We also show how the coefficients in the dispersion relations can be obtained through a multiparameter fit of the gamma ray burst (GRB) data.Comment: 9 pages, final published version, revised abstract, introduction and conclusion, to make it clear to general reade

    Covariant quantization of membrane dynamics

    Get PDF
    A Lorentz covariant quantization of membrane dynamics is defined, which also leaves unbroken the full three dimensional diffeomorphism invariance of the membrane. Among the applications studied are the reduction to string theory, which may be understood in terms of the phase space and constraints, and the interpretation of physical,zero-energy states. A matrix regularization is defined as in the light cone gauged fixed theory but there are difficulties implementing all the gauge symmetries. The problem involves the non-area-preserving diffeomorphisms which are realized non-linearly in the classical theory. In the quantum theory they do not seem to have a consistent implementation for finite N. Finally, an approach to a genuinely background independent formulation of matrix dynamics is briefly described.Comment: Latex, 21 pages, no figure
    • …
    corecore