4,482 research outputs found

    Realistic calculations of nuclear disappearance lifetimes induced by neutron-antineutron oscillations

    Full text link
    Realistic calculations of nuclear disappearance lifetimes induced by neutron-antineutron oscillations are reported for oxygen and iron, using antineutron nuclear potentials derived from a recent comprehensive analysis of antiproton atomic X-ray and radiochemical data. A lower limit of 3.3 x 10E8 s on the neutron-antineutron oscillation time is derived from the Super-Kamiokande I new lower limit of 1.77 x 10E32 yr on the neutron lifetime in oxygen. Antineutron scattering lengths in carbon and nickel, needed in trap experiments using ultracold neutrons, are calculated from updated antinucleon optical potentials at threshold, with results shown to be largely model independent.Comment: version matching PRD publication, typos and references correcte

    Decaying Dark Matter from Dark Instantons

    Full text link
    We construct an explicit, TeV-scale model of decaying dark matter in which the approximate stability of the dark matter candidate is a consequence of a global symmetry that is broken only by instanton-induced operators generated by a non-Abelian dark gauge group. The dominant dark matter decay channels are to standard model leptons. Annihilation of the dark matter to standard model states occurs primarily through the Higgs portal. We show that the mass and lifetime of the dark matter candidate in this model can be chosen to be consistent with the values favored by fits to data from the PAMELA and Fermi LAT experiments.Comment: 19 pages LaTeX, 3 eps figures. v2,v3: references adde

    Cosmic Coincidence and Asymmetric Dark Matter in a Stueckelberg Extension

    Full text link
    We discuss the possibility of cogenesis generating the ratio of baryon asymmetry to dark matter in a Stueckelberg U(1) extension of the standard model and of the minimal supersymmetric standard model. For the U(1) we choose Lμ−LτL_{\mu}-L_{\tau} which is anomaly free and can be gauged. The dark matter candidate arising from this extension is a singlet of the standard model gauge group but is charged under Lμ−LτL_{\mu}-L_{\tau}. Solutions to the Boltzmann equations for relics in the presence of asymmetric dark matter are discussed. It is shown that the ratio of the baryon asymmetry to dark matter consistent with the current WMAP data, i.e., the cosmic coincidence, can be successfully explained in this model with the depletion of the symmetric component of dark matter from resonant annihilation via the Stueckelberg gauge boson. For the extended MSSM model it is shown that one has a two component dark matter picture with asymmetric dark matter being the dominant component and the neutralino being the subdominant component (i.e., with relic density a small fraction of the WMAP cold dark matter value). Remarkably, the subdominant component can be detected in direct detection experiments such as SuperCDMS and XENON-100. Further, it is shown that the class of Stueckelberg models with a gauged Lμ−LτL_{\mu}-L_{\tau} will produce a dramatic signature at a muon collider with the σ(μ+μ−→μ+μ−,τ+τ−)\sigma(\mu^+\mu^-\to \mu^+\mu^-,\tau^+\tau^-) showing a detectable Z′Z' resonance while σ(μ+μ−→e+e−)\sigma(\mu^+\mu^-\to e^+e^-) is devoid of this resonance. Asymmetric dark matter arising from a U(1)B−LU(1)_{B-L} Stueckelberg extension is also briefly discussed. Finally, in the models we propose the asymmetric dark matter does not oscillate and there is no danger of it being washed out from oscillations.Comment: 36 pages, 7 figure

    The Electroweak Phase Transition in Ultra Minimal Technicolor

    Full text link
    We unveil the temperature-dependent electroweak phase transition in new extensions of the Standard Model in which the electroweak symmetry is spontaneously broken via strongly coupled, nearly-conformal dynamics achieved by the means of multiple matter representations. In particular, we focus on the low energy effective theory introduced to describe Ultra Minimal Walking Technicolor at the phase transition. Using the one-loop effective potential with ring improvement, we identify regions of parameter space which yield a strong first order transition. A striking feature of the model is the existence of a second phase transition associated to the electroweak-singlet sector. The interplay between these two transitions leads to an extremely rich phase diagram.Comment: 38 RevTeX pages, 9 figure
    • …
    corecore