34 research outputs found

    Critical temperature and giant isotope effect in presence of paramagnons

    Get PDF
    We reconsider the long-standing problem of the effect of spin fluctuations on the critical temperature and isotope effect in a phonon-mediated superconductor. Although the general physics of the interplay between phonons and paramagnons had been rather well understood, the existing approximate formulas fail to describe the correct behavior of % T_{c} for general phonon and paramagnon spectra. Using a controllable approximation, we derive an analytical formula for TcT_{c} which agrees well with exact numerical solutions of the Eliashberg equations for a broad range of parameters. Based on both numerical and analytical results, we predict a strong enhancement of the isotope effect when the frequencies of spin fluctuation and phonons are of the same order. This effect may have important consequences for near-magnetic superconductors such as MgCNi3_{3}Comment: 5 pages, 2 figure

    Optical Sum Rule in Strongly Correlated Systems

    Full text link
    We discuss the problem of a possible "violation" of the optical sum rule in the normal (non superconducting) state of strongly correlated electronic systems, using our recently proposed DMFT+Sigma approach, applied to two typical models: the "hot - spot" model of the pseudogap state and disordered Anderson - Hubbard model. We explicitly demonstrate that the general Kubo single band sum rule is satisfied for both models. However, the optical integral itself is in general dependent on temperature and characteristic parameters, such as pseudogap width, correlation strength and disorder scattering, leading to effective "violation" of the optical sum rule, which may be observed in the experiments.Comment: 7 pages, 9 figure

    Optical Sum Rule anomalies in the High-Tc Cuprates

    Full text link
    We provide a brief summary of the observed sum rule anomalies in the high-Tc_c cuprate materials. A recent issue has been the impact of a non-infinite frequency cutoff in the experiment. In the normal state, the observed anomalously high temperature dependence can be explained as a `cutoff effect'. The anomalous rise in the optical spectral weight below the superconducting transition, however, remains as a solid experimental observation, even with the use of a cutoff frequency.Comment: 4 pages, 2 figures, very brief review of optical sum rule anomal

    Ab initio calculations of the physical properties of transition metal carbides and nitrides and possible routes to high-Tc

    Full text link
    Ab initio linear-response calculations are reported of the phonon spectra and the electron-phonon interaction for several transition metal carbides and nitrides in a NaCl-type structure. For NbC, the kinetic, optical, and superconducting properties are calculated in detail at various pressures and the normal-pressure results are found to well agree with the experiment. Factors accounting for the relatively low critical temperatures Tc in transition metal compounds with light elements are considered and the possible ways of increasing Tc are discussed.Comment: 19 pages, 7 figure

    Phenomenological description of the microwave surface impedance and complex conductivity of high-TcT_c single crystals

    Full text link
    Measurements of the microwave surface impedance Zs(T)=Rs(T)+iXs(T)Z_s(T)=R_s(T)+iX_s(T) and of the complex conductivity σs(T)\sigma_s(T) of high-quality, high-TcT_c single crystals of YBCO, BSCCO, TBCCO, and TBCO are analyzed. Experimental data of Zs(T)Z_s(T) and σs(T)\sigma_s(T) are compared with calculations based on a modified two-fluid model which includes temperature-dependent quasiparticle scattering and a unique temperature variation of the density of superconducting carriers. We elucidate agreement as well as disagreement of our analysis with the salient features of the experimental data. Existing microscopic models are reviewed which are based on unconventional symmetry types of the order parameter and on novel mechanisms of quasiparticle relaxation.Comment: 15 pages, 17 figures, 1 tabl

    Optical Sum Rule in Finite Bands

    Full text link
    In a single finite electronic band the total optical spectral weight or optical sum carries information on the interactions involved between the charge carriers as well as on their band structure. It varies with temperature as well as with impurity scattering. The single band optical sum also bears some relationship to the charge carrier kinetic energy and, thus, can potentially provide useful information, particularly on its change as the charge carriers go from normal to superconducting state. Here we review the considerable advances that have recently been made in the context of high TcT_c oxides, both theoretical and experimental.Comment: Review article accepted for publication in J. Low Temp. Phys. 29 pages, 33 figure
    corecore