34 research outputs found
Critical temperature and giant isotope effect in presence of paramagnons
We reconsider the long-standing problem of the effect of spin fluctuations on
the critical temperature and isotope effect in a phonon-mediated
superconductor. Although the general physics of the interplay between phonons
and paramagnons had been rather well understood, the existing approximate
formulas fail to describe the correct behavior of for general phonon
and paramagnon spectra. Using a controllable approximation, we derive an
analytical formula for which agrees well with exact numerical solutions
of the Eliashberg equations for a broad range of parameters. Based on both
numerical and analytical results, we predict a strong enhancement of the
isotope effect when the frequencies of spin fluctuation and phonons are of the
same order. This effect may have important consequences for near-magnetic
superconductors such as MgCNiComment: 5 pages, 2 figure
Optical Sum Rule in Strongly Correlated Systems
We discuss the problem of a possible "violation" of the optical sum rule in
the normal (non superconducting) state of strongly correlated electronic
systems, using our recently proposed DMFT+Sigma approach, applied to two
typical models: the "hot - spot" model of the pseudogap state and disordered
Anderson - Hubbard model. We explicitly demonstrate that the general Kubo
single band sum rule is satisfied for both models. However, the optical
integral itself is in general dependent on temperature and characteristic
parameters, such as pseudogap width, correlation strength and disorder
scattering, leading to effective "violation" of the optical sum rule, which may
be observed in the experiments.Comment: 7 pages, 9 figure
Optical Sum Rule anomalies in the High-Tc Cuprates
We provide a brief summary of the observed sum rule anomalies in the
high-T cuprate materials. A recent issue has been the impact of a
non-infinite frequency cutoff in the experiment. In the normal state, the
observed anomalously high temperature dependence can be explained as a `cutoff
effect'. The anomalous rise in the optical spectral weight below the
superconducting transition, however, remains as a solid experimental
observation, even with the use of a cutoff frequency.Comment: 4 pages, 2 figures, very brief review of optical sum rule anomal
Ab initio calculations of the physical properties of transition metal carbides and nitrides and possible routes to high-Tc
Ab initio linear-response calculations are reported of the phonon spectra and
the electron-phonon interaction for several transition metal carbides and
nitrides in a NaCl-type structure. For NbC, the kinetic, optical, and
superconducting properties are calculated in detail at various pressures and
the normal-pressure results are found to well agree with the experiment.
Factors accounting for the relatively low critical temperatures Tc in
transition metal compounds with light elements are considered and the possible
ways of increasing Tc are discussed.Comment: 19 pages, 7 figure
Phenomenological description of the microwave surface impedance and complex conductivity of high- single crystals
Measurements of the microwave surface impedance and
of the complex conductivity of high-quality, high- single
crystals of YBCO, BSCCO, TBCCO, and TBCO are analyzed. Experimental data of
and are compared with calculations based on a modified
two-fluid model which includes temperature-dependent quasiparticle scattering
and a unique temperature variation of the density of superconducting carriers.
We elucidate agreement as well as disagreement of our analysis with the salient
features of the experimental data. Existing microscopic models are reviewed
which are based on unconventional symmetry types of the order parameter and on
novel mechanisms of quasiparticle relaxation.Comment: 15 pages, 17 figures, 1 tabl
Optical Sum Rule in Finite Bands
In a single finite electronic band the total optical spectral weight or
optical sum carries information on the interactions involved between the charge
carriers as well as on their band structure. It varies with temperature as well
as with impurity scattering. The single band optical sum also bears some
relationship to the charge carrier kinetic energy and, thus, can potentially
provide useful information, particularly on its change as the charge carriers
go from normal to superconducting state. Here we review the considerable
advances that have recently been made in the context of high oxides, both
theoretical and experimental.Comment: Review article accepted for publication in J. Low Temp. Phys. 29
pages, 33 figure