4,503 research outputs found

    Computer system for monitoring radiorepirometry data

    Get PDF
    System monitors expired breath patterns simultaneously from four small animals after they have been injected with carbon-14 substrates. It has revealed significant quantitative differences in oxidation patterns of glucose following such mild treatments of rats as a change in diet or environment

    The delayed uncoupled continuous-time random walks do not provide a model for the telegraph equation

    Full text link
    It has been alleged in several papers that the so called delayed continuous-time random walks (DCTRWs) provide a model for the one-dimensional telegraph equation at microscopic level. This conclusion, being widespread now, is strange, since the telegraph equation describes phenomena with finite propagation speed, while the velocity of the motion of particles in the DCTRWs is infinite. In this paper we investigate how accurate are the approximations to the DCTRWs provided by the telegraph equation. We show that the diffusion equation, being the correct limit of the DCTRWs, gives better approximations in L2L_2 norm to the DCTRWs than the telegraph equation. We conclude therefore that, first, the DCTRWs do not provide any correct microscopic interpretation of the one-dimensional telegraph equation, and second, the kinetic (exact) model of the telegraph equation is different from the model based on the DCTRWs.Comment: 12 pages, 9 figure

    Transport in a Levy ratchet: Group velocity and distribution spread

    Full text link
    We consider the motion of an overdamped particle in a periodic potential lacking spatial symmetry under the influence of symmetric L\'evy noise, being a minimal setup for a ``L\'evy ratchet.'' Due to the non-thermal character of the L\'evy noise, the particle exhibits a motion with a preferred direction even in the absence of whatever additional time-dependent forces. The examination of the L\'evy ratchet has to be based on the characteristics of directionality which are different from typically used measures like mean current and the dispersion of particles' positions, since these get inappropriate when the moments of the noise diverge. To overcome this problem, we discuss robust measures of directionality of transport like the position of the median of the particles displacements' distribution characterizing the group velocity, and the interquantile distance giving the measure of the distributions' width. Moreover, we analyze the behavior of splitting probabilities for leaving an interval of a given length unveiling qualitative differences between the noises with L\'evy indices below and above unity. Finally, we inspect the problem of the first escape from an interval of given length revealing independence of exit times on the structure of the potential.Comment: 9 pages, 12 figure

    The Midpoint Rule as a Variational--Symplectic Integrator. I. Hamiltonian Systems

    Get PDF
    Numerical algorithms based on variational and symplectic integrators exhibit special features that make them promising candidates for application to general relativity and other constrained Hamiltonian systems. This paper lays part of the foundation for such applications. The midpoint rule for Hamilton's equations is examined from the perspectives of variational and symplectic integrators. It is shown that the midpoint rule preserves the symplectic form, conserves Noether charges, and exhibits excellent long--term energy behavior. The energy behavior is explained by the result, shown here, that the midpoint rule exactly conserves a phase space function that is close to the Hamiltonian. The presentation includes several examples.Comment: 11 pages, 8 figures, REVTe

    Edgeworth expansions for slow-fast systems with finite time scale separation

    Get PDF
    We derive Edgeworth expansions that describe corrections to the Gaussian limiting behaviour of slow-fast systems. The Edgeworth expansion is achieved using a semi-group formalism for the transfer operator, where a Duhamel-Dyson series is used to asymptotically determine the corrections at any desired order of the time scale parameter ε. The corrections involve integrals over higher-order auto-correlation functions. We develop a diagrammatic representation of the series to control the combinatorial wealth of the asymptotic expansion in ε and provide explicit expressions for the first two orders. At a formal level, the expressions derived are valid in the case when the fast dynamics is stochastic as well as when the fast dynamics is entirely deterministic. We corroborate our analytical results with numerical simulations and show that our method provides an improvement on the classical homogenization limit which is restricted to the limit of infinite time scale separation

    Reactive dynamics on fractal sets: anomalous fluctuations and memory effects

    Full text link
    We study the effect of fractal initial conditions in closed reactive systems in the cases of both mobile and immobile reactants. For the reaction A+AAA+A\to A, in the absence of diffusion, the mean number of particles AA is shown to decay exponentially to a steady state which depends on the details of the initial conditions. The nature of this dependence is demonstrated both analytically and numerically. In contrast, when diffusion is incorporated, it is shown that the mean number of particles decays asymptotically as tdf/2t^{-d_f/2}, the memory of the initial conditions being now carried by the dynamical power law exponent. The latter is fully determined by the fractal dimension dfd_f of the initial conditions.Comment: 7 pages, 2 figures, uses epl.cl

    A probabilistic approach to some results by Nieto and Truax

    Full text link
    In this paper, we reconsider some results by Nieto and Truax about generating functions for arbitrary order coherent and squeezed states. These results were obtained using the exponential of the Laplacian operator; more elaborated operational identities were used by Dattoli et al. \cite{Dattoli} to extend these results. In this note, we show that the operational approach can be replaced by a purely probabilistic approach, in the sense that the exponential of derivatives operators can be identified with equivalent expectation operators. This approach brings new insight about the kinks between operational and probabilistic calculus.Comment: 2nd versio

    Irreducible decomposition of Gaussian distributions and the spectrum of black-body radiation

    Get PDF
    It is shown that the energy of a mode of a classical chaotic field, following the continuous exponential distribution as a classical random variable, can be uniquely decomposed into a sum of its fractional part and of its integer part. The integer part is a discrete random variable (we call it Planck variable) whose distribution is just the Bose distribution yielding the Planck law of black-body radiation. The fractional part is the dark part (we call is dark variable) with a continuous distribution, which is, of course, not observed in the experiments. It is proved that the Bose distribution is infinitely divisible, and the irreducible decomposition of it is given. The Planck variable can be decomposed into an infinite sum of independent binary random variables representing the binary photons (more accurately photo-molecules or photo-multiplets) of energies 2^s*h*nu with s=0,1,2... . These binary photons follow the Fermi statistics. Consequently, the black-body radiation can be viewed as a mixture of statistically and thermodynamically independent fermion gases consisting of binary photons. The binary photons give a natural tool for the dyadic expansion of arbitrary (but not coherent) ordinary photon excitations. It is shown that the binary photons have wave-particle fluctuations of fermions. These fluctuations combine to give the wave-particle fluctuations of the original bosonic photons expressed by the Einstein fluctuation formula.Comment: 29 page

    Critical density of a soliton gas

    Get PDF
    We quantify the notion of a dense soliton gas by establishing an upper bound for the integrated density of states of the quantum-mechanical Schr\"odinger operator associated with the KdV soliton gas dynamics. As a by-product of our derivation we find the speed of sound in the soliton gas with Gaussian spectral distribution function.Comment: 7 page

    Two-dimensional random walk in a bounded domain

    Full text link
    In a recent Letter Ciftci and Cakmak [EPL 87, 60003 (2009)] showed that the two dimensional random walk in a bounded domain, where walkers which cross the boundary return to a base curve near origin with deterministic rules, can produce regular patterns. Our numerical calculations suggest that the cumulative probability distribution function of the returning walkers along the base curve is a Devil's staircase, which can be explained from the mapping of these walks to a non-linear stochastic map. The non-trivial probability distribution function(PDF) is a universal feature of CCRW characterized by the fractal dimension d=1.75(0) of the PDF bounding curve.Comment: 4 pages, 7 eps figures, revtex
    corecore