4,503 research outputs found
Computer system for monitoring radiorepirometry data
System monitors expired breath patterns simultaneously from four small animals after they have been injected with carbon-14 substrates. It has revealed significant quantitative differences in oxidation patterns of glucose following such mild treatments of rats as a change in diet or environment
The delayed uncoupled continuous-time random walks do not provide a model for the telegraph equation
It has been alleged in several papers that the so called delayed
continuous-time random walks (DCTRWs) provide a model for the one-dimensional
telegraph equation at microscopic level. This conclusion, being widespread now,
is strange, since the telegraph equation describes phenomena with finite
propagation speed, while the velocity of the motion of particles in the DCTRWs
is infinite. In this paper we investigate how accurate are the approximations
to the DCTRWs provided by the telegraph equation. We show that the diffusion
equation, being the correct limit of the DCTRWs, gives better approximations in
norm to the DCTRWs than the telegraph equation. We conclude therefore
that, first, the DCTRWs do not provide any correct microscopic interpretation
of the one-dimensional telegraph equation, and second, the kinetic (exact)
model of the telegraph equation is different from the model based on the
DCTRWs.Comment: 12 pages, 9 figure
Transport in a Levy ratchet: Group velocity and distribution spread
We consider the motion of an overdamped particle in a periodic potential
lacking spatial symmetry under the influence of symmetric L\'evy noise, being a
minimal setup for a ``L\'evy ratchet.'' Due to the non-thermal character of the
L\'evy noise, the particle exhibits a motion with a preferred direction even in
the absence of whatever additional time-dependent forces. The examination of
the L\'evy ratchet has to be based on the characteristics of directionality
which are different from typically used measures like mean current and the
dispersion of particles' positions, since these get inappropriate when the
moments of the noise diverge. To overcome this problem, we discuss robust
measures of directionality of transport like the position of the median of the
particles displacements' distribution characterizing the group velocity, and
the interquantile distance giving the measure of the distributions' width.
Moreover, we analyze the behavior of splitting probabilities for leaving an
interval of a given length unveiling qualitative differences between the noises
with L\'evy indices below and above unity. Finally, we inspect the problem of
the first escape from an interval of given length revealing independence of
exit times on the structure of the potential.Comment: 9 pages, 12 figure
The Midpoint Rule as a Variational--Symplectic Integrator. I. Hamiltonian Systems
Numerical algorithms based on variational and symplectic integrators exhibit
special features that make them promising candidates for application to general
relativity and other constrained Hamiltonian systems. This paper lays part of
the foundation for such applications. The midpoint rule for Hamilton's
equations is examined from the perspectives of variational and symplectic
integrators. It is shown that the midpoint rule preserves the symplectic form,
conserves Noether charges, and exhibits excellent long--term energy behavior.
The energy behavior is explained by the result, shown here, that the midpoint
rule exactly conserves a phase space function that is close to the Hamiltonian.
The presentation includes several examples.Comment: 11 pages, 8 figures, REVTe
Edgeworth expansions for slow-fast systems with finite time scale separation
We derive Edgeworth expansions that describe corrections to the Gaussian limiting behaviour of slow-fast systems. The Edgeworth expansion is achieved using a semi-group formalism for the transfer operator, where a Duhamel-Dyson series is used to asymptotically determine the corrections at any desired order of the time scale parameter ε. The corrections involve integrals over higher-order auto-correlation functions. We develop a diagrammatic representation of the series to control the combinatorial wealth of the asymptotic expansion in ε and provide explicit expressions for the first two orders. At a formal level, the expressions derived are valid in the case when the fast dynamics is stochastic as well as when the fast dynamics is entirely deterministic. We corroborate our analytical results with numerical simulations and show that our method provides an improvement on the classical homogenization limit which is restricted to the limit of infinite time scale separation
Reactive dynamics on fractal sets: anomalous fluctuations and memory effects
We study the effect of fractal initial conditions in closed reactive systems
in the cases of both mobile and immobile reactants. For the reaction , in the absence of diffusion, the mean number of particles is shown to
decay exponentially to a steady state which depends on the details of the
initial conditions. The nature of this dependence is demonstrated both
analytically and numerically. In contrast, when diffusion is incorporated, it
is shown that the mean number of particles decays asymptotically as
, the memory of the initial conditions being now carried by the
dynamical power law exponent. The latter is fully determined by the fractal
dimension of the initial conditions.Comment: 7 pages, 2 figures, uses epl.cl
A probabilistic approach to some results by Nieto and Truax
In this paper, we reconsider some results by Nieto and Truax about generating
functions for arbitrary order coherent and squeezed states. These results were
obtained using the exponential of the Laplacian operator; more elaborated
operational identities were used by Dattoli et al. \cite{Dattoli} to extend
these results. In this note, we show that the operational approach can be
replaced by a purely probabilistic approach, in the sense that the exponential
of derivatives operators can be identified with equivalent expectation
operators. This approach brings new insight about the kinks between operational
and probabilistic calculus.Comment: 2nd versio
Irreducible decomposition of Gaussian distributions and the spectrum of black-body radiation
It is shown that the energy of a mode of a classical chaotic field, following
the continuous exponential distribution as a classical random variable, can be
uniquely decomposed into a sum of its fractional part and of its integer part.
The integer part is a discrete random variable (we call it Planck variable)
whose distribution is just the Bose distribution yielding the Planck law of
black-body radiation. The fractional part is the dark part (we call is dark
variable) with a continuous distribution, which is, of course, not observed in
the experiments. It is proved that the Bose distribution is infinitely
divisible, and the irreducible decomposition of it is given. The Planck
variable can be decomposed into an infinite sum of independent binary random
variables representing the binary photons (more accurately photo-molecules or
photo-multiplets) of energies 2^s*h*nu with s=0,1,2... . These binary photons
follow the Fermi statistics. Consequently, the black-body radiation can be
viewed as a mixture of statistically and thermodynamically independent fermion
gases consisting of binary photons. The binary photons give a natural tool for
the dyadic expansion of arbitrary (but not coherent) ordinary photon
excitations. It is shown that the binary photons have wave-particle
fluctuations of fermions. These fluctuations combine to give the wave-particle
fluctuations of the original bosonic photons expressed by the Einstein
fluctuation formula.Comment: 29 page
Critical density of a soliton gas
We quantify the notion of a dense soliton gas by establishing an upper bound
for the integrated density of states of the quantum-mechanical Schr\"odinger
operator associated with the KdV soliton gas dynamics. As a by-product of our
derivation we find the speed of sound in the soliton gas with Gaussian spectral
distribution function.Comment: 7 page
Two-dimensional random walk in a bounded domain
In a recent Letter Ciftci and Cakmak [EPL 87, 60003 (2009)] showed that the
two dimensional random walk in a bounded domain, where walkers which cross the
boundary return to a base curve near origin with deterministic rules, can
produce regular patterns. Our numerical calculations suggest that the
cumulative probability distribution function of the returning walkers along the
base curve is a Devil's staircase, which can be explained from the mapping of
these walks to a non-linear stochastic map. The non-trivial probability
distribution function(PDF) is a universal feature of CCRW characterized by the
fractal dimension d=1.75(0) of the PDF bounding curve.Comment: 4 pages, 7 eps figures, revtex
- …