10,269 research outputs found
Handbook for estimating toxic fuel hazards
Computer program predicts, from readily available meteorological data, concentration and dosage fields downwind from ground-level and elevated sources of toxic fuel emissions. Mathematical model is applicable to hot plume rise from industrial stacks and should also be of interest to air pollution meteorologists
Parametric instabilities in magnetized multicomponent plasmas
This paper investigates the excitation of various natural modes in a
magnetized bi-ion or dusty plasma. The excitation is provided by parametrically
pumping the magnetic field. Here two ion-like species are allowed to be fully
mobile. This generalizes our previous work where the second heavy species was
taken to be stationary. Their collection of charge from the background neutral
plasma modifies the dispersion properties of the pump and excited waves. The
introduction of an extra mobile species adds extra modes to both these types of
waves. We firstly investigate the pump wave in detail, in the case where the
background magnetic field is perpendicular to the direction of propagation of
the pump wave. Then we derive the dispersion equation relating the pump to the
excited wave for modes propagating parallel to the background magnetic field.
It is found that there are a total of twelve resonant interactions allowed,
whose various growth rates are calculated and discussed.Comment: Published in May 2004; this is a late submission to the archive. 14
pages, 8 figure
Diagnostic criteria for grading the severity of acute motion sickness
Diagnostic criteria for grading severity of acute motion sicknes
A joint time-dependent density-functional theory for excited states of electronic systems in solution
We present a novel joint time-dependent density-functional theory for the
description of solute-solvent systems in time-dependent external potentials.
Starting with the exact quantum-mechanical action functional for both electrons
and nuclei, we systematically eliminate solvent degrees of freedom and thus
arrive at coarse-grained action functionals which retain the highly accurate
\emph{ab initio} description for the solute and are, in principle, exact. This
procedure allows us to examine approximations underlying popular embedding
theories for excited states. Finally, we introduce a novel approximate action
functional for the solute-water system and compute the solvato-chromic shift of
the lowest singlet excited state of formaldehyde in aqueous solution, which is
in good agreement with experimental findings.Comment: 11 page
In search for natural wormholes
We have investigated 631 time profiles of gamma ray bursts from the BATSE
database searching for observable signatures produced by microlensing events
related to natural wormholes. The results of this first search of topologically
nontrivial objects in the Universe can be used to constrain their number and
mass.Comment: Mod. Phys. Lett. A. (in press) Latex (revtex style) with no figure
An analysis of the acoustic cavitation noise spectrum: The role of periodic shock waves
Research on applications of acoustic cavitation is often reported in terms of the features within the spectrum of the emissions gathered during cavitation occurrence. There is, however, limited understanding as to the contribution of specific bubble activity to spectral features, beyond a binary interpretation of stable versus inertial cavitation. In this work, laser-nucleation is used to initiate cavitation within a few millimeters of the tip of a needle hydrophone, calibrated for magnitude and phase from 125 kHz to 20 MHz. The bubble activity, acoustically driven at f0 = 692 kHz, is resolved with high-speed shadowgraphic imaging at 5 × 106 frames per second. A synthetic spectrum is constructed from component signals based on the hydrophone data, deconvolved within the calibration bandwidth, in the time domain. Cross correlation coefficients between the experimental and synthetic spectra of 0.97 for the f 0/2 and f 0/3 regimes indicate that periodic shock waves and scattered driving field predominantly account for all spectral features, including the sub-harmonics and their over-harmonics, and harmonics of f 0
Wormholes, Gamma Ray Bursts and the Amount of Negative Mass in the Universe
In this essay, we assume that negative mass objects can exist in the
extragalactic space and analyze the consequences of their microlensing on light
from distant Active Galactic Nuclei. We find that such events have very similar
features to some observed Gamma Ray Bursts and use recent satellite data to set
an upper bound to the amount of negative mass in the universe.Comment: Essay awarded ``Honorable Mention'' in the Gravity Foundation
Research Awards, 199
Distinct human stem cell populations in small and large intestine
The intestine is composed of an epithelial layer containing rapidly proliferating cells that mature into two regions, the small and the large intestine. Although previous studies have identified stem cells as the cell-of-origin for intestinal epithelial cells, no studies have directly compared stem cells derived from these anatomically distinct regions. Here, we examine intrinsic differences between primary epithelial cells isolated from human fetal small and large intestine, after in vitro expansion, using the Wnt agonist R-spondin 2.We utilized flow cytometry, fluorescence-activated cell sorting, gene expression analysis and a three-dimensional in vitro differentiation assay to characterize their stemcell properties. We identified stem cell markers that separate subpopulations of colony-forming cells in the small and large intestine and revealed important differences in differentiation, proliferation and disease pathways using gene expression analysis. Single cells from small and large intestine cultures formed organoids that reflect the distinct cellular hierarchy found in vivo and respond differently to identical exogenous cues. Our characterization identified numerous differences between small and large intestine epithelial stem cells suggesting possible connections to intestinal disease
Adsorbate site determination with the scanning tunneling microscope: C<sub>2</sub>H<sub>4</sub> on Cu{110}
Scanning tunneling microscopy at T=4 K has been used to determine directly the binding site of a molecule chemisorbed on a metal surface, namely, ethene on Cu〈110〉, by simultaneous imaging of the adsorbate and the underlying lattice. The molecule is found to bond in the short bridge site on the close-packed rows with its C-C axis oriented in the 〈110〉 direction
- …