72 research outputs found

    Epithelioma of Malherbe: new ultrasound patterns

    Get PDF
    <p>Abstract</p> <p>Backround</p> <p>Calcifying epithelioma of Malherbe, or Pilomatricoma, is considered an uncommon cutaneous neoplasia, normally occurring in children as a solitary, firm, asymptomatic, hard, subcutaneous, slowly growing nodule on the face, neck, or proximal upper extremity. In literature, two Pilomatricoma ultrasound patterns are described: the totally calcified nodule and the hypoechoic nodule with internal calcific foci. High frequency ultrasound has not yet been applied for routine diagnosis of Pilomatricoma. The aim of the study was to retrospectively identify specific ultrasound features.</p> <p>Methods</p> <p>We retrieved 124 histologically Pilomatricoma cases: 28 patients with 32 lesions were preoperatively evaluated with ultrasound.</p> <p>Results</p> <p>22/32 have shown a solid formation, hypoechoic, with a sharp outline. Of these 22, 10 lesions were completely calcifying and 12 partially calcified. In 3/32 lesions with uncertain diagnosis, ultrasounds showed a complex/mixed pattern with pseudo-fluid areas and microspots. 7/32 lesions with US different diagnosis included 3 complex lesions, 2 cystic lesions and 2 solid nodular lesions.</p> <p>Conclusion</p> <p>In addition to well-known ultrasound patterns (completely calcified and partially calcified) we identified three new, not yet described, patterns that constitute the 31% of the cases: complex, pseudocistyc and pseudotumoral.</p

    Generation of stable Drosophila cell lines using multicistronic vectors

    Get PDF
    Insect cell culture is becoming increasingly important for applications including recombinant protein production and cell-based screening with chemical or RNAi libraries. While stable mammalian cell lines expressing a protein of interest can be efficiently prepared using IRES-based vectors or viral-based approaches, options for stable insect cell lines are more limited. Here, we describe pAc5-STABLEs, new vectors for use in Drosophila cell culture to facilitate stable transformation. We show that viral-derived 2A-like (or "CHYSEL") peptides function in Drosophila cells and can mediate the multicistronic expression of two or three proteins of interest under control of the Actin5C constitutive promoter. The current vectors allow mCherry and/or GFP fusions to be generated for positive selection by G418 resistance in cells and should serve as a flexible platform for future applications

    A novel canine kidney cell line model for the evaluation of neoplastic development: karyotype evolution associated with spontaneous immortalization and tumorigenicity

    Get PDF
    The molecular mechanisms underlying spontaneous neoplastic transformation in cultured mammalian cells remain poorly understood, confounding recognition of parallels with the biology of naturally occurring cancer. The broad use of tumorigenic canine cell lines as research tools, coupled with the accumulation of cytogenomic data from naturally occurring canine cancers, makes the domestic dog an ideal system in which to investigate these relationships. We developed a canine kidney cell line, CKB1-3T7, which allows prospective examination of the onset of spontaneous immortalization and tumorigenicity. We documented the accumulation of cytogenomic aberrations in CKB1-3T7 over 24 months in continuous culture. The majority of aberrations emerged in parallel with key phenotypic changes in cell morphology, growth kinetics, and tumor incidence and latency. Focal deletion of CDKN2A/B emerged first, preceding the onset and progression of tumorigenic potential, and progressed to a homozygous deletion across the cell population during extended culture. Interestingly, CKB1-3T7 demonstrated a tumorigenic phenotype in vivo prior to exhibiting loss of contact inhibition in vitro. We also performed the first genome-wide characterization of the canine tumorigenic cell line MDCK, which also exhibited CDKN2A/B deletion. MDCK and CKB1-3T7 cells shared several additional aberrations that we have reported previously as being highly recurrent in spontaneous canine cancers, many of which, as with CDKN2A/B deletion, are evolutionarily conserved in their human counterparts. The conservation of these molecular events across multiple species, in vitro and in vivo, despite their contrasting karyotypic architecture, is a powerful indicator of a common mechanism underlying emerging neoplastic activity. Through integrated cytogenomic and phenotypic characterization of serial passages of CKB1-3T7 from initiation to development of a tumorigenic phenotype, we present a robust and readily accessible model (to be made available through the American Type Culture Collection) of spontaneous neoplastic transformation that overcomes many of the limitations of earlier studies. ELECTRONIC SUPPLEMENTARY MATERIAL: The online version of this article (doi:10.1007/s10577-015-9474-8) contains supplementary material, which is available to authorized users

    MicroRNA profiles discriminate among colon cancer metastasis

    Get PDF
    MicroRNAs are being exploited for diagnosis, prognosis and monitoring of cancer and other diseases. Their high tissue specificity and critical role in oncogenesis provide new biomarkers for the diagnosis and classification of cancer as well as predicting patients' outcomes. MicroRNAs signatures have been identified for many human tumors, including colorectal cancer (CRC). In most cases, metastatic disease is difficult to predict and to prevent with adequate therapies. The aim of our study was to identify a microRNA signature for metastatic CRC that could predict and differentiate metastatic target organ localization. Normal and cancer tissues of three different groups of CRC patients were analyzed. RNA microarray and TaqMan Array analysis were performed on 66 Italian patients with or without lymph nodes and/or liver recurrences. Data obtained with the two assays were analyzed separately and then intersected to identify a primary CRC metastatic signature. Five differentially expressed microRNAs (hsa-miR-21, -103, -93, -31 and -566) were validated by qRT-PCR on a second group of 16 American metastatic patients. In situ hybridization was performed on the 16 American patients as well as on three distinct commercial tissues microarray (TMA) containing normal adjacent colon, the primary adenocarcinoma, normal and metastatic lymph nodes and liver. Hsa-miRNA-21, -93, and -103 upregulation together with hsa-miR-566 downregulation defined the CRC metastatic signature, while in situ hybridization data identified a lymphonodal invasion profile. We provided the first microRNAs signature that could discriminate between colorectal recurrences to lymph nodes and liver and between colorectal liver metastasis and primary hepatic tumor

    L'automazione applicata all'analisi dei preparati eso-endocervicali

    No full text

    FINE NEEDLE ASPIRATION BIOPSY IN THE PREOPERATIVE MANAGEMENT OF PATIENTS WITH THYROID NODULES

    No full text

    Knockout mice reveal a tumor suppressor function for Testin

    No full text
    The Testin (TES) gene was previously identified as a putative human tumor suppressor gene at 7q31.2, a region that is frequently deleted in hematopoietic malignancies, as well as in epithelial tumors. To determine whether TES acts as a tumor suppressor in vivo, we generated a Tes knockout mouse and then used it in an established model of carcinogen-induced gastric cancer. In mice a zinc-deficient (ZD) diet enhances cellular proliferation in the forestomach and susceptibility to N-nitrosomethylbenzylamine (NMBA)-induced carcinogenesis. Five-week-old Tes wild-type (+/+), heterozygous (+/-), and homozygous (-/-) mice were divided into four groups: mice fed a zinc-sufficient diet (ZS); mice fed a ZD diet; ZS fed plus NMBA-treated mice (ZS+NMBA), and ZD fed plus NMBA-treated mice (ZD+NMBA). After 4 weeks, the ZS+NMBA and ZD+NMBA groups were treated with three intragastric doses of NMBA. Animals were killed 8 weeks after NMBA administration: 25% of +/+ mice developed benign lesions; 88% of +/- showed multiple papillomas, atypical glandular metaplasia, and squamous cell carcinomasl; and 81% of -/- mice displayed very large papillomas, squamous cell carcinomas, and adenocarcinomas. A statistically significant difference in tumor incidence was found between +/- versus +/+ and -/- versus +/+ (P < 0.0001). These data suggest that Tes functions as a tumor suppressor gene in vivo
    • …
    corecore