31 research outputs found

    Direct Binding of a Hepatitis C Virus Inhibitor to the Viral Capsid Protein

    Get PDF
    Over 130 million people are infected chronically with hepatitis C virus (HCV), which, together with HBV, is the leading cause of liver disease. Novel small molecule inhibitors of Hepatitis C virus (HCV) are needed to complement or replace current treatments based on pegylated interferon and ribavirin, which are only partially successful and plagued with side-effects. Assembly of the virion is initiated by the oligomerization of core, the capsid protein, followed by the interaction with NS5A and other HCV proteins. By screening for inhibitors of core dimerization, we previously discovered peptides and drug-like compounds that disrupt interactions between core and other HCV proteins, NS3 and NS5A, and block HCV production. Here we report that a biotinylated derivative of SL209, a prototype small molecule inhibitor of core dimerization (IC50 of 2.80 µM) that inhibits HCV production with an EC50 of 3.20 µM, is capable of penetrating HCV-infected cells and tracking with core. Interaction between the inhibitors, core and other viral proteins was demonstrated by SL209–mediated affinity-isolation of HCV proteins from lysates of infected cells, or of the corresponding recombinant HCV proteins. SL209-like inhibitors of HCV core may form the basis of novel treatments of Hepatitis C in combination with other target-specific HCV drugs such as inhibitors of the NS3 protease, the NS5B polymerase, or the NS5A regulatory protein. More generally, our work supports the hypothesis that inhibitors of viral capsid formation might constitute a new class of potent antiviral agents, as was recently also shown for HIV capsid inhibitors

    Leptin and leptin receptor polymorphisms are associated with increased risk and poor prognosis of breast carcinoma

    Get PDF
    BACKGROUND: Leptin (LEP) has been consistently associated with angiogenesis and tumor growth. Leptin exerts its physiological action through its specific receptor (LEPR). We have investigated whether genetic variations in LEP and LEPR have implications for susceptibility to and prognosis in breast carcinoma. METHODS: We used the polymerase chain reaction and restriction enzyme digestion to characterize the variation of the LEP and LEPR genes in 308 unrelated Tunisian patients with breast carcinoma and 222 healthy control subjects. Associations of the clinicopathologic parameters and these genetic markers with the rates of the breast carcinoma-specific overall survival (OVS) and the disease free survival (DFS) were assessed using univariate and multivariate analyses. RESULTS: A significantly increased risk of breast carcinoma was associated with heterozygous LEP (-2548) GA (OR = 1.45; P = 0.04) and homozygous LEP (-2548) AA (OR = 3.17; P = 0.001) variants. A highly significant association was found between the heterozygous LEPR 223QR genotype (OR = 1.68; P = 0.007) or homozygous LEPR 223RR genotype (OR = 2.26; P = 0.001) and breast carcinoma. Moreover, the presence of the LEP (-2548) A allele showed a significant association with decreased disease-free survival in breast carcinoma patients, and the presence of the LEPR 223R allele showed a significant association with decreased overall survival. CONCLUSION: Our results indicated that the polymorphisms in LEP and LEPR genes are associated with increased breast cancer risk as well as disease progress, supporting our hypothesis for leptin involvement in cancer pathogenesis

    A Possible Control by Regulatory Allelic Genes of Allotypic Expression

    No full text

    Lectin-gene expression in pea (Pisum sativum L.) roots

    No full text
    International audienceThe expression of a lectin gene in pea (Pisum sativum L.) roots has been investigated using the copy DNA of a pea seed lectin as a probe. An mRNA which has the same size as the seed mRNA but which is about 4000 times less abundant has been detected in 21-d-old roots. The probe detected lectin expression as early as 4 d after sowing, with the highest level being reached at 10 d, i.e. just before nodulation. In later stages (16-d- and 21-d-old roots), expression was substantially decreased. The correlation between infection by Rhizobium leguminosarum and lectin expression in pea roots has been investigated by comparing root lectin mRNA levels in inoculated plants and in plants grown under conditions preventing nodulation. Neither growth in a nitrate concentration which inhibited nodulation nor growth in the absence of Rhizobium appreciably affected lectin expression in roots

    The pea lectin gene family contains only one functional gene

    No full text
    International audienceMolecular hybridization experiments have shown that the pea genome contains four regions which hybridize with pea lectin cDNA (Kaminski, Buffard, and Strosberg, 1986. Plant Science 46, 111-116). The complete organization of the pea lectin gene family was investigated. Four partial EcoRI genomic libraries were screened with a lectin cDNA (pPS 15-50) covering the entire coding region. Four positive recombinant phages, λI 101, λI 52, λIII 51 and λIV 22, were isolated and the DNA sequences of the subclones, designated respectively PSL1, PSL2, PSL3 and PSL4, were determined. PSL2, PSL3 and PSL4 are incomplete genes; the presence of several stop codons in the correct reading frames indicate that these genes cannot code for a functional lectin protein. The sequences of PSL1 and pPS 15-50 have identical coding regions. The pea lectin gene has no intervening sequences and is flanked at its 5' region by a sequence containing an exceptionally high A+T content (73%). Eucaryotic consensus sequences such as a TATA box and a polyadenylation signal are also found in the flanking regions of the PSL1 clone

    Rapid large-scale purification of plasmid DNA by medium or low pressure gel filtration. Application: construction of thermoamplifiable expression vectors

    No full text
    International audienceThis paper describes a new method of lasmid DNA purification which is fast and reliable enough for most purposes in recombinant DNA technology. The present method does not require the use of toxic chemicals such as phenol or ethidium bromide, costly ultra-centrifugation procedures or other processes which can modify the supercoiled structure of the plasmids, such as adsorption on glass fiber. This method is based on the principle of gel filtration chromatography, at low pressure (1 bar) or medium pressure (between 5 and 10 bars), using Sephacryl S1000 or Superose 6B. It permits recovery oI plasmids: (I) in preparative quantities (from 300 gg to 4 mg), (II) exempt from RNA, DNA and protein contamination, and (III) suitable for various common genetic engineering procedures immediately after purification. To test the reliability of the technique as well as the degree of purilication, the plasmids were used to construct thermoampliIiable vectors, carrying the tacUV5 promoter and the 5′ end of the β -gallactosidase gone with a single EcoRl site in each of the three possible translational phases. This set of vectors is designed for the expression of foreign genes as hybrid proteins in Escherichia coli
    corecore