9,203 research outputs found
Semiconductor Materials by Ultrasonic Spray Pyrolysis and Their Application in Electronic Devices
Ultrasonic spray pyrolysis is a deposition technique that enables a fine mist of the precursor solution in order to deposit higher-density thin films. This characteristic makes of great potential the use of ultrasonically spray-deposited semiconductors films for low-cost, transparent, flexible and large-area applications. In this chapter, low-temperature deposition and characterization of ultrasonically spray-deposited zinc oxide (ZnO) films are presented. The ZnO films deposited by ultrasonic spray pyrolysis at 200°C were characterized by optical transmittance, photoluminescence spectroscopy, X-ray diffraction and Fourier transform infrared spectroscopy. The study of low-temperature annealing of ZnO films is also presented. Moreover, the characterization of aluminum-doped ZnO films deposited by ultrasonic spray pyrolysis at 200°C is presented. Finally, applications of these ultrasonic spray-deposited films in electronic devices are presented
Tuning metamaterials by using amorphous magnetic microwires
In this work, we demonstrate theoretically and experimentally the possibility of tuning the electromagnetic properties of metamaterials with magnetic fields by incorporating amorphous magnetic microwires. The large permeability of these wires at microwave frequencies allows tuning the resonance of the metamaterial by using magnetic fields of the order of tens of Oe. We describe here the physical basis of the interaction between a prototypical magnetic metamaterial with magnetic microwires and electromagnetic waves plus providing detailed calculations and experimental results for the case of an array of Split Ring Resonators with Co-based microwires
Metal-Semiconductor Interfaces in Thin-Film Transistors
The metal-semiconductor interface in thin-film transistors (TFTs) is one of the bottlenecks on the development of these devices. Although this interface does not play an active role in the transistor operation, a low-quality interface can be responsible for a low performance operation. In a-Si TFTs, a doped film can be used to improve this interface, however, in other TFT technologies, there is no doped film to be used. In this chapter, some alternatives to improve this interface are analysed. Also, the influence of this interface on the electrical stability of these devices is presented
A Simple Entropic-Driving Separation Procedure of Low-Size Silver Clusters, Through Interaction with DNA
Synthesis and purification of metal clusters without strong binding agents by wet chemical methods are very attractive for their potential applications in many research areas. However, especially challenging is the separation of uncharged clusters with only a few number of atoms, which renders the usual techniques very difficult to apply. Herein, we report the first efficient separation of Ag2 and Ag3 clusters using the different entropic driving forces when such clusters interact with DNA, into which Ag3 selectively intercalates. After sequential dialysis of the samples and denaturalizing the DNA-Ag3 complex, pure Ag2 can be found in the dialysate after extensive dialysis. Free Ag3 is recovered after DNA denaturation
Noncommutative brane-world, (Anti) de Sitter vacua and extra dimensions
We investigate a curved brane-world, inspired by a noncommutative D3-brane,
in a type IIB string theory. We obtain, an axially symmetric and a spherically
symmetric, (anti) de Sitter black holes in 4D. The event horizons of these
black holes possess a constant curvature and may be seen to be governed by
different topologies. The extremal geometries are explored, using the
noncommutative scaling in the theory, to reassure the attractor behavior at the
black hole event horizon. The emerging two dimensional, semi-classical, black
hole is analyzed to provide evidence for the extra dimensions in a curved
brane-world. It is argued that the gauge nonlinearity in the theory may be
redefined by a potential in a moduli space. As a result, D=11 and D=12
dimensional geometries may be obtained at the stable extrema of the potential.Comment: 17 pages, 1 figur
Quiet Sun magnetic fields from simultaneous inversions of visible and infrared spectropolarimetric observations
We study the quiet Sun magnetic fields using spectropolarimetric observations
of the infrared and visible Fe I lines at 6301.5, 6302.5, 15648 and 15653 A.
Magnetic field strengths and filling factors are inferred by the simultaneous
fit of the observed Stokes profiles under the MISMA hypothesis. The
observations cover an intra-network region at the solar disk center. We analyze
2280 Stokes profiles whose polarization signals are above noise in the two
spectral ranges, which correspond to 40% of the field of view. Most of these
profiles can be reproduced only with a model atmosphere including 3 magnetic
components with very different field strengths, which indicates the
co-existence of kG and sub-kG fields in our 1.5" resolution elements. We
measure an unsigned magnetic flux density of 9.6 G considering the full field
of view. Half of the pixels present magnetic fields with mixed polarities in
the resolution element. The fraction of mixed polarities increases as the
polarization weakens. We compute the probability density function of finding
each magnetic field strength. It has a significant contribution of kG field
strengths, which concentrates most of the observed magnetic flux and energy.
This kG contribution has a preferred magnetic polarity, while the polarity of
the weak fields is balanced.Comment: 16 pages and 14 figure
- …