4,733 research outputs found

    Magnetic anisotropy reveals Acadian transpressional fabrics in an Appalachian ophiolite (Thetford Mines, Canada)

    Get PDF
    SUMMARY Magnetic anisotropy has proved effective in characterizing primary, spreading-related magmatic fabrics in Mesozoic (Tethyan) ophiolites, for example in documenting lower oceanic crustal flow. The potential for preservation of primary magnetic fabrics has not been tested, however, in older Palaeozoic ophiolites, where anisotropy may record regional strain during polyphase deformation. Here, we present anisotropy of magnetic susceptibility results from the Ordovician Thetford Mines ophiolite (Canada) that experienced two major phases of post-accretion deformation, during the Taconian and Acadian orogenic events. Magnetic fabrics consistent with modal layering in gabbros are observed at one locality, suggesting that primary fabrics may survive deformation locally in low strain zones. However, at remaining sites rocks with different magmatic origins have consistent magnetic fabrics, reflecting structurally controlled shape preferred orientations of iron-rich phases. Subhorizontal NW-SE-oriented minimum principal susceptibility axes correlate with poles to cleavage observed in overlying post-obduction, pre-Acadian sedimentary formations, indicating that the magnetic foliation in the ophiolite formed during regional NW-SE Acadian shortening. Maximum principal susceptibility axes plunging steeply to the NE are orthogonal to the orientation of regional Acadian fold axes, and are consistent with subvertical tectonic stretching. This magnetic lineation is parallel to the shape preferred orientation of secondary amphibole crystals and is interpreted to reflect grain growth during Acadian dextral transpression. This structural style has been widely reported along the Appalachian orogen, but the magnetic fabric data presented here provide the first evidence for transpression recorded in an Appalachian ophiolite.</jats:p

    May Adiponectin be considered as a Novel Cardiometabolic Biomarker?

    Get PDF
    This study was designed to evaluate the interaction between total adiponectin (ADPN) and metabolic syndrome (MetS) on cardiac changes in 135 subjects with and without MetS, subgrouped according to normal or low ADPN. Left ventricular internal diameter (LVID/h), LV mass (LVM), LVM index (LVMI), interventricular septal thickness (IVST), relative wall thickness (RWT) and LV ejection fraction (EF) by echocardiography and diastolic parameters, by pulsed-wave Doppler were calculated. BMI, LVM, LVMI, LVID/h, IVST and RWT values were significantly (p<0.05) higher in both groups with low ADPN. Prevalence of left ventricular hypertrophy (p<0.001) and coronary artery disease (p<0.01) was significantly higher in both low ADPN groups. LVMI correlated directly with BMI (p<0.001), (p<0.001), MetS (p<0.001) and inversely with ADPN (p<0.0001). ADPN and BMI resulted independently associated with LVMI. In conclusion, our data suggest that hypoadiponectinemia might be considered a novel “cardiometabolic biomarker”. Accordingly, circulating ADPN might become a new target in the management of cardiometabolic syndrome

    Pathogenesis and molecular mechanisms of anderson–fabry disease and possible new molecular addressed therapeutic strategies

    Get PDF
    Anderson–Fabry disease (AFD) is a rare disease with an incidenceof approxi-mately 1:117,000 male births. Lysosomal accumulation of globotriaosylceramide (Gb3) is the element characterizing Fabry disease due to a hereditary deficiency α-galactosidase A (GLA) enzyme. The accumulation of Gb3 causes lysosomal dysfunction that compromises cell signaling pathways. Deposition of sphingolipids occurs in the autonomic nervous system, dorsal root ganglia, kidney epithelial cells, vascular system cells, and myocardial cells, resulting in organ failure. This manuscript will review the molecular pathogenetic pathways involved in Anderson–Fabry disease and in its organ damage. Some studies reported that inhibition of mitochondrial function and energy metabolism plays a signif-icant role in AFD cardiomyopathy and in kidney disease of AFD patients. Furthermore, mitochondrial dysfunction has been reported as linked to the dysregulation of the au-tophagy–lysosomal pathway which inhibits the mechanistic target of rapamycin kinase (mTOR) mediated control of mitochondrial metabolism in AFD cells. Cerebrovascular complications due to AFD are caused by cerebral micro vessel stenosis. These are caused by wall thickening resulting from the intramural accumulation of glycolipids, luminal oc-clusion or thrombosis. Other pathogenetic mechanisms involved in organ damage linked to Gb3 accumulation are endocytosis and lysosomal degradation of endothelial calcium-activated intermediate-conductance potassium ion channel 3.1 (KCa3.1) via a clathrin-de-pendent process. This process represents a crucial event in endothelial dysfunction. Several studies have identified the deacylated form of Gb3, globotriaosylsphingosine (Lyso-Gb3), as the main catabolite that increases in plasma and urine in patients with AFD. The mean concentrations of Gb3 in all organs and plasma of Galactosidase A knockout mice were significantly higher than those of wild-type mice. The distributions of Gb3 isoforms vary from organ to organ. Various Gb3 isoforms were observed mainly in the kidneys, and kidney-specific Gb3 isoforms were hydroxylated. Furthermore, the action of Gb3 on the KCa3.1 channel suggests a possible contribution of this interaction to the Fabry disease process, as this channel is expressed in various cells, including endothelial cells, fibro-blasts, smooth muscle cells in proliferation, microglia, and lymphocytes. These molecular pathways could be considered a potential therapeutic target to correct the enzyme in ad-dition to the traditional enzyme replacement therapies (ERT) or drug chaperone therapy

    Quercetin Reduces Lipid Accumulation in a Cell Model of NAFLD by Inhibiting De Novo Fatty Acid Synthesis through the Acetyl‐CoA Carboxylase 1/AMPK/PP2A Axis

    Get PDF
    none6noDysregulation of de novo lipogenesis (DNL) has recently gained strong attention as being one of the critical factors that contribute to the assessment of non‐alcoholic fatty liver disease (NAFLD). NAFLD is often diagnosed in patients with dyslipidemias and type 2 diabetes; thus, an interesting correlation can be deduced between high hematic free fatty acids and glucose excess in the DNL dysregulation. In the present study, we report that, in a cellular model of NAFLD, the coexistence of elevated glucose and FFA conditions caused the highest cellular lipid accumulation. Deepening the molecular mechanisms of the DNL dysregulation—RT‐qPCR and immunoblot analysis demonstrated increased expression of mitochondrial citrate carrier (CiC), cytosolic acetyl‐ CoA carboxylase 1 (ACACA), and diacylglycerol acyltransferase 2 (DGAT2) involved in fatty acids and triglycerides synthesis, respectively. XBP‐1, an endoplasmic reticulum stress marker, and SREBP‐1 were the transcription factors connected to the DNL activation. Quercetin (Que), a flavonoid with strong antioxidant properties, and noticeably reduced the lipid accumulation and the expression of SREBP‐1 and XBP‐1, as well as of their lipogenic gene targets in steatotic cells. The anti‐lipogenic action of Que mainly occurs through a strong phosphorylation of ACACA, which catalyzes the committing step in the DNL pathway. The high level of ACACA phosphorylation in Que‐treated cells was explained by the intervention of AMPK together with the reduction of enzymatic activity of PP2A phosphatase. Overall, our findings highlight a direct anti‐lipogenic effect of Que exerted through inhibition of the DNL pathway by acting on ACACA/AMPK/PP2A axis; thus, suggesting this flavonoid as a promising molecule for the NAFLD treatment.openGnoni A.; Di Chiara Stanca B.; Giannotti L.; Gnoni G.V.; Siculella L.; Damiano F.Gnoni, A.; Di Chiara Stanca, B.; Giannotti, L.; Gnoni, G. V.; Siculella, L.; Damiano, F

    Assessment of heart rate variability (HRV) in subjects with type 2 diabetes mellitus with and without diabetic foot: correlations with endothelial dysfunction indices and markers of adipo-inflammatory dysfunction

    Get PDF
    Background: Some studies have suggested that patients with diabetes and foot complications have worse cardiovascular and cerebrovascular risk profiles, higher degrees of endothelial dysfunction and arterial stiffness and a higher inflammatory background than patients with diabetes without diabetic foot complications. Patients with diabetes mellitus have an alteration in the sympathovagal balance as assessed by means of heart rate variability (HRV) analysis, which is also related to the presence of endothelial dysfunction. Other studies suggest a possible role of inflammation coexisting with the alteration in the sympathovagal balance in favor of the atherosclerotic process in a mixed population of healthy subjects of middle and advanced age. Aims: The aim of this study was to evaluate the degree of alteration of sympathovagal balance, assessed by HRV analysis, in a cohort of patients with diabetes mellitus with diabetic foot and in control subjects without diabetic foot compared with a population of healthy subjects and the possible correlation of HRV parameters with inflammatory markers and endothelial dysfunction indices. Methods: We enrolled all patients with diabetic ulcerative lesions of the lower limb in the Internal Medicine with Stroke Care ward and of the diabetic foot outpatient clinic of P. Giaccone University Hospital of Palermo between September 2019 and July 2020. 4-h ECG Holter was performed. The following time domain HRV measures were analyzed: average heart rate, square root of the mean of successive differences of NN (RMSSD), standard deviation or square root of the variance (SD), and standard deviation of the means of the NN intervals calculated over a five-minute period (SDANN/5&nbsp;min). The LF/HF ratio was calculated, reactive hyperemia was evaluated by endo-PAT, and serum levels of vaspine and omentin-1 were assessed by blood sample collection. Results: 63 patients with diabetic foot, 30 patients with diabetes and without ulcerative complications and 30 patients without diabetes were enrolled. Patients with diabetic ulcers showed lower mean diastolic blood pressure values than healthy controls, lower MMSE scores corrected for age, lower serum levels of omentin-1, lower RHI values, higher body weight values and comparable body height values, HF% and LF/HF ratio values. We also reported a negative correlation between the RHI value and HRV indices and the expression of increased parasympathetic activity (RMSDD and HF%) in subjects with diabetic foot and a statistically significant positive correlation with the LF/HF ratio and the expression of the sympathovagal balance. Discussion: Patients with diabetic foot show a higher degree of activation of the parasympathetic system, expressed by the increase in HF values, and a lower LF/HF ratio. Our findings may corroborate the issue that a parasympathetic dysfunction may have a possible additive role in the pathogenesis of other vascular complications in subjects with diabetic foot

    Vitamin D status of inmates. The experience of penitentiaries prisons in the province of Salerno in Southern Italy

    Get PDF
    Introduction: Prisoners are at risk of developing vitamin D deficiency due to their lacking exposure to sunlight. So far, there are no published studies evaluating blood levels of vitamin D in relation to the health status of inmates and the quality of the Italian prison system. Aim: To investigate vitamin D status and its determinants in a cohort of prisoners. Subject and methods: One hundred and seventy-two (172) pri-son inmates (males, n=159, age 47± 11.3 years; females, n=13, age 43.91±12.18 years) of three penitentiaries in the province of Salerno. Vitamin D deficiency, insufficiency and sufficiency were respectively defined as a 25(OH)D level &lt;20 ng/mL; from 20 to 30 ng/mL, &gt;30 ng/mL. Results: In our group, Vitamin D deficiency occurs in 77.32% of the prisoners with 32.55% of the cases having severe insufficiency. Prisoners with higher BMI show lower circulating vitamin D levels (p&lt;0.001). No significant relationship was found with the duration of detention (Pearson R: 0.01). Conclusion: In this cohort of inmates the vitamin D status is determined by BMI, but not by the duration of the detention
    • 

    corecore