1,077 research outputs found
First-place finish : imparting fine surface finishes when micromilling
There are several key milling practices that help impart fine surface finishes in micromilling. They include running at ultrahigh spindle speeds, carefully monitoring chip load, employing climb milling when possible and using CAM software to develop toolpaths that enhance surface finishes. There are also promising developments that can improve surface finishes in areas as diverse as using atomized cutting fluids and milling ultrafine-grain workpieces
Characterization of the PCMBS-dependent modification of KCa3.1 channel gating.
Intermediate conductance, calcium-activated potassium channels are gated by the binding of intracellular Ca(2+) to calmodulin, a Ca(2+)-binding protein that is constitutively associated with the C terminus of the channel. Although previous studies indicated that the pore-lining residues along the C-terminal portion of S6 contribute to the activation mechanism, little is known about whether the nonluminal face of S6 contributes to this process. Here we demonstrate that the sulfhydral reagent, parachloromercuribenze sulfonate (PCMBS), modifies an endogenous cysteine residue predicted to have a nonluminal orientation (Cys(276)) along the sixth transmembrane segment (S6). Modification of Cys(276) manipulates the steady-state and kinetic behavior of the channel by shifting the gating equilibrium toward the open state, resulting in a left shift in apparent Ca(2+) affinity and a slowing in the deactivation process. Using a six-state gating scheme, our analysis shows that PCMBS slows the transition between the open state back to the third closed state. Interpreting this result in the context of the steady-state and kinetic data suggests that PCMBS functions to shift the gating equilibrium toward the open state by disrupting channel closing. In an attempt to understand whether the nonluminal face of S6 participates in the activation mechanism, we conducted a partial tryptophan scan of this region. Substituting a tryptophan for Leu(281) recapitulated the effect on the steady-state and kinetic behavior observed with PCMBS. Considering the predicted nonluminal orientation of Cys(276) and Leu(281), a simple physical interpretation of these results is that the nonluminal face of S6 forms a critical interaction surface mediating the transition into the closed conformation, suggesting the nonluminal C-terminal portion of S6 is allosterically coupled to the activation gate
MECI: A Method for Eclipsing Component Identification
We describe an automated method for assigning the most probable physical
parameters to the components of an eclipsing binary, using only its photometric
light curve and combined colors. With traditional methods, one attempts to
optimize a multi-parameter model over many iterations, so as to minimize the
chi-squared value. We suggest an alternative method, where one selects pairs of
coeval stars from a set of theoretical stellar models, and compares their
simulated light curves and combined colors with the observations. This approach
greatly reduces the parameter space over which one needs to search, and allows
one to estimate the components' masses, radii and absolute magnitudes, without
spectroscopic data. We have implemented this method in an automated program
using published theoretical isochrones and limb-darkening coefficients. Since
it is easy to automate, this method lends itself to systematic analyses of
datasets consisting of photometric time series of large numbers of stars, such
as those produced by OGLE, MACHO, TrES, HAT, and many others surveys.Comment: 25 pages, 7 figures, accepted for publication in Ap
Division of Reproductive Science Research
The Division of Reproductive Science Research at the University of Iowa has a long tradition and was formally organized in 2009. Since then, the division has enjoyed extensive growth and development in many areas of reproductive research. Sponsored by the Eunice Kennedy Shriver National Institute of Child Health and Human Development (NICHD) and the NIH Office of Research on Women’s Health, a Women’s Reproductive Health Research Career Development Center, was established to train future physician-scientists. Further, to enhance our capability to perform translational research, the Women’s Health Tissue Repository was established. This robust bio-repository includes the Maternal Fetal Tissue Bank, the Paternal Contributions to Children’s Health Biobank, the Well Woman Bank, the Reproductive Endocrinology and Infertility Biobank, and the Gynecologic Malignancies Biobank. Together, these biobanks collect samples from all stages of women’s lives and have deep clinical annotations
Development of a beam propagation method to simulate the point spread function degradation in scattering media
Scattering is one of the main issues that limit the imaging depth in deep tissue optical imaging. To characterize the role of scattering, we have developed a forward model based on the beam propagation method and established the link between the macroscopic optical properties of the media and the statistical parameters of the phase masks applied to the wavefront. Using this model, we have analyzed the degradation of the point-spread function of the illumination beam in the transition regime from ballistic to diffusive light transport. Our method provides a wave-optic simulation toolkit to analyze the effects of scattering on image quality degradation in scanning microscopy. Our open-source implementation is available at https://github.com/BUNPC/Beam-Propagation-Method.Accepted manuscrip
Dynamin- and Rab5-Dependent Endocytosis of a Ca<sup>2+</sup>-Activated K<sup>+</sup> Channel, KCa2.3
Regulation of the number of ion channels at the plasma membrane is a critical component of the physiological response. We recently demonstrated that the Ca2+-activated K+ channel, KCa2.3 is rapidly endocytosed and enters a Rab35- and EPI64C-dependent recycling compartment. Herein, we addressed the early endocytic steps of KCa2.3 using a combination of fluorescence and biotinylation techniques. We demonstrate that KCa2.3 is localized to caveolin-rich domains of the plasma membrane using fluorescence co-localization, transmission electron microscopy and co-immunoprecipitation (co-IP). Further, in cells lacking caveolin-1, we observed an accumulation of KCa2.3 at the plasma membrane as well as a decreased rate of endocytosis, as assessed by biotinylation. We also demonstrate that KCa2.3 and dynamin II are co-localized following endocytosis as well as demonstrating they are associated by co-IP. Further, expression of K44A dynamin II resulted in a 2-fold increase in plasma membrane KCa2.3 as well as a 3-fold inhibition of endocytosis. Finally, we evaluated the role of Rab5 in the endocytosis of KCa2.3. We demonstrate that expression of a dominant active Rab5 (Q79L) results in the accumulation of newly endocytosed KCa2.3 on to the membrane of the Rab5-induced vacuoles. We confirmed this co-localization by co-IP; demonstrating that KCa2.3 and Rab5 are associated. As expected, if Rab5 is required for the endocytosis of KCa2.3, expression of a dominant negative Rab5 (S34N) resulted in an approximate 2-fold accumulation of KCa2.3 at the plasma membrane. This was confirmed by siRNA-mediated knockdown of Rab5. Expression of the dominant negative Rab5 also resulted in a decreased rate of KCa2.3 endocytosis. These results demonstrate that KCa2.3 is localized to a caveolin-rich domain within the plasma membrane and is endocytosed in a dynamin- and Rab5-dependent manner prior to entering the Rab35/EPI64C recycling compartment and returning to the plasma membrane. © 2012 Gao et al
Atmospheric Processing Module for Mars Propellant Production
The multi-NASA center Mars Atmosphere and Regolith COllector/PrOcessor for Lander Operations (MARCO POLO) project was established to build and demonstrate a methaneoxygen propellant production system in a Mars analog environment. Work at the Kennedy Space Center (KSC) Applied Chemistry Laboratory is focused on the Atmospheric Processing Module (APM). The purpose of the APM is to freeze carbon dioxide from a simulated Martian atmosphere containing the minor components nitrogen, argon, carbon monoxide, and water vapor at Martian pressures (approx. 8 torr) by using dual cryocoolers with alternating cycles of freezing and sublimation. The resulting pressurized CO(sub 2) is fed to a methanation subsystem where it is catalytically combined with hydrogen in a Sabatier reactor supplied by the Johnson Space Center (JSC) to make methane and water vapor. We first used a simplified once-through setup and later employed a H(sub 2)CO(sub 2) recycling system to improve process efficiency. This presentation and paper will cover (1) the design and selection of major hardware items, such as the cryocoolers, pumps, tanks, chillers, and membrane separators, (2) the determination of the optimal cold head design and flow rates needed to meet the collection requirement of 88 g CO(sub 2) hr for 14 hr, (3) the testing of the CO(sub 2) freezer subsystem, and (4) the integration and testing of the two subsystems to verify the desired production rate of 31.7 g CH(sub 4) hr and 71.3 g H(sub 2)O hr along with verification of their purity. The resulting 2.22 kg of CH(sub 2)O(sub 2) propellant per 14 hr day (including O(sub 2) from electrolysis of water recovered from regolith, which also supplies the H(sub 2) for methanation) is of the scale needed for a Mars Sample Return mission. In addition, the significance of the project to NASAs new Mars exploration plans will be discussed
Preeclampsia and MicroRNAs
Preeclampsia is a critical gestational condition that threatens the life of both mother and child. One of the most serious aspects of preeclampsia hampering both clinical management and scientific understanding is that there are, as yet, no early warning signs or risk markers. The discovery of microRNAs (miRNAs), tiny post-transcriptional regulators of gene expression, offers potentially fertile ground for developing such markers. The current state of knowledge about miRNAs in preeclampsia is presented along with information regarding miRNA detection in peripheral fluids that could lead to minimally invasive risk assessment
The Possible Role of CO2 in Producing A Post-Stimulus CBF and BOLD Undershoot
Comprehending the underlying mechanisms of neurovascular coupling is important for understanding the pathogenesis of neurodegenerative diseases related to uncoupling. Moreover, it elucidates the casual relation between the neural signaling and the hemodynamic responses measured with various imaging modalities such as functional magnetic resonance imaging (fMRI). There are mainly two hypotheses concerning this mechanism: a metabolic hypothesis and a neurogenic hypothesis. We have modified recent models of neurovascular coupling adding the effects of both NO (nitric oxide) kinetics, which is a well-known neurogenic vasodilator, and CO2 kinetics as a metabolic vasodilator. We have also added the Hodgkin–Huxley equations relating the membrane potentials to sodium influx through the membrane. Our results show that the dominant factor in the hemodynamic response is NO, however CO2 is important in producing a brief post-stimulus undershoot in the blood flow response that in turn modifies the fMRI blood oxygenation level-dependent post-stimulus undershoot. Our results suggest that increased cerebral blood flow during stimulation causes CO2 washout which then results in a post-stimulus hypocapnia induced vasoconstrictive effect
- …