59 research outputs found

    Coalescence of Two Impurities in a Trapped One-dimensional Bose Gas

    Full text link
    We study the ground state of a one-dimensional (1D) trapped Bose gas with two mobile impurity particles. To investigate this set-up, we develop a variational procedure in which the coordinates of the impurity particles are slow-like variables. We validate our method using the exact results obtained for small systems. Then, we discuss energies and pair densities for systems that contain of the order of one hundred atoms. We show that bosonic non-interacting impurities cluster. To explain this clustering, we calculate and discuss induced impurity-impurity potentials in a harmonic trap. Further, we compute the force between static impurities in a ring ({\it {\`a} la} the Casimir force), and contrast the two effective potentials: the one obtained from the mean-field approximation, and the one due to the one-phonon exchange. Our formalism and findings are important for understanding (beyond the polaron model) the physics of modern 1D cold-atom systems with more than one impurity.Comment: 10 pages, 6 figures, published versio

    An interpolatory ansatz captures the physics of one-dimensional confined Fermi systems

    Full text link
    Interacting one-dimensional quantum systems play a pivotal role in physics. Exact solutions can be obtained for the homogeneous case using the Bethe ansatz and bosonisation techniques. However, these approaches are not applicable when external confinement is present. Recent theoretical advances beyond the Bethe ansatz and bosonisation allow us to predict the behaviour of one-dimensional confined systems with strong short-range interactions, and new experiments with cold atomic Fermi gases have already confirmed these theories. Here we demonstrate that a simple linear combination of the strongly interacting solution with the well-known solution in the limit of vanishing interactions provides a simple and accurate description of the system for all values of the interaction strength. This indicates that one can indeed capture the physics of confined one-dimensional systems by knowledge of the limits using wave functions that are much easier to handle than the output of typical numerical approaches. We demonstrate our scheme for experimentally relevant systems with up to six particles. Moreover, we show that our method works also in the case of mixed systems of particles with different masses. This is an important feature because these systems are known to be non-integrable and thus not solvable by the Bethe ansatz technique.Comment: 22 pages including methods and supplementary materials, 11 figures, title slightly change

    Integrable families of hard-core particles with unequal masses in a one-dimensional harmonic trap

    Full text link
    We show that the dynamics of particles in a one-dimensional harmonic trap with hard-core interactions can be solvable for certain arrangements of unequal masses. For any number of particles, there exist two families of unequal mass particles that have integrable dynamics, and there are additional exceptional cases for three, four and five particles. The integrable mass families are classified by Coxeter reflection groups and the corresponding solutions are Bethe ansatz-like superpositions of hyperspherical harmonics in the relative hyperangular coordinates that are then restricted to sectors of fixed particle order. We also provide evidence for superintegrability of these Coxeter mass families and conjecture maximal superintegrability.Comment: 9.5+4.5 pages, 5 figures, 2 tables; v3: a few corrections and addition

    Opinion Mining on Non-English Short Text

    Full text link
    As the type and the number of such venues increase, automated analysis of sentiment on textual resources has become an essential data mining task. In this paper, we investigate the problem of mining opinions on the collection of informal short texts. Both positive and negative sentiment strength of texts are detected. We focus on a non-English language that has few resources for text mining. This approach would help enhance the sentiment analysis in languages where a list of opinionated words does not exist. We propose a new method projects the text into dense and low dimensional feature vectors according to the sentiment strength of the words. We detect the mixture of positive and negative sentiments on a multi-variant scale. Empirical evaluation of the proposed framework on Turkish tweets shows that our approach gets good results for opinion mining
    corecore