392 research outputs found

    Synchronized cycles of bacterial lysis for in vivo delivery

    Get PDF
    The pervasive view of bacteria as strictly pathogenic has given way to an ppreciation of the widespread prevalence of beneficial microbes within the human body. Given this milieu, it is perhaps inevitable that some bacteria would evolve to preferentially grow in environments that harbor disease and thus provide a natural platform for the development of engineered therapies. Such therapies could benefit from bacteria that are programmed to limit bacterial growth while continually producing and releasing cytotoxic agents in situ. Here, we engineer a clinically relevant bacterium to lyse synchronously at a threshold population density and to release genetically encoded cargo. Following quorum lysis, a small number of surviving bacteria reseed the growing population, thus leading to pulsatile delivery cycles. We use microfluidic devices to characterize the engineered lysis strain and we demonstrate its potential as a drug deliver platform via co-culture with human cancer cells in vitro. As a proof of principle, we track the bacterial population dynamics in ectopic syngeneic colorectal tumors in mice. The lysis strain exhibits pulsatile population dynamics in vivo, with mean bacterial luminescence that remained two orders of magnitude lower than an unmodified strain. Finally, guided by previous findings that certain bacteria can enhance the efficacy of standard therapies, we orally administer the lysis strain, alone or in combination with a clinical chemotherapeutic, to a syngeneic transplantation model of hepatic colorectal metastases. We find that the combination of both circuit-engineered bacteria and chemotherapy leads to a notable reduction of tumor activity along with a marked survival benefit over either therapy alone. Our approach establishes a methodology for leveraging the tools of synthetic biology to exploit the natural propensity for certain bacteria to colonize disease sites.National Institute of General Medical Sciences (U.S.) (GM069811)San Diego Center for Systems Biology (P50 GM085764)National Cancer Institute (U.S.). Swanson Biotechnology Center (Koch Institute Support Grant (P30-CA14051))National Institute of Environmental Health Sciences (Core Center Grant (P30- ES002109))National Institutes of Health (U.S.) (NIH Pathway to Independence Award NIH (K99 CA197649-01))Misrock Postdoctoral fellowshipNational Defense Science and Engineering Graduate (NDSEG) Fellowshi

    Programmable probiotics for detection of cancer in urine

    Get PDF
    Rapid advances in the forward engineering of genetic circuitry in living cells has positioned synthetic biology as a potential means to solve numerous biomedical problems, including disease diagnosis and therapy. One challenge in exploiting synthetic biology for translational applications is to engineer microbes that are well tolerated by patients and seamlessly integrate with existing clinical methods. We use the safe and widely used probiotic Escherichia coli Nissle 1917 to develop an orally administered diagnostic that can noninvasively indicate the presence of liver metastasis by producing easily detectable signals in urine. Our microbial diagnostic generated a high-contrast urine signal through selective expansion in liver metastases (10[superscript 6]-fold enrichment) and high expression of a lacZ reporter maintained by engineering a stable plasmid system. The lacZ reporter cleaves a substrate to produce a small molecule that can be detected in urine. E. coli Nissle 1917 robustly colonized tumor tissue in rodent models of liver metastasis after oral delivery but did not colonize healthy organs or fibrotic liver tissue. We saw no deleterious health effects on the mice for more than 12 months after oral delivery. Our results demonstrate that probiotics can be programmed to safely and selectively deliver synthetic gene circuits to diseased tissue microenvironments in vivo.Ludwig Center for Molecular OncologyAmar G. Bose Research GrantSan Diego Center for Systems Biology (United States. National Institutes of Health Grant P50 GM085764)National Institute of General Medical Sciences (U.S.) (R01GM69811)National Cancer Institute (U.S.) (Koch Institute Support (Core) Grant P30-CA14051)National Institute of Environmental Health Sciences (Core Center Grant P30-ES002109)Misrock Foundation (Postdoctoral Fellowship)National Institutes of Health (U.S.) (Ruth L. Kirschstein National Research Service Award)Burroughs Wellcome Fund (Career Award at the Scientific Interface

    Uncertainty Principle for Control of Ensembles of Oscillators Driven by Common Noise

    Full text link
    We discuss control techniques for noisy self-sustained oscillators with a focus on reliability, stability of the response to noisy driving, and oscillation coherence understood in the sense of constancy of oscillation frequency. For any kind of linear feedback control--single and multiple delay feedback, linear frequency filter, etc.--the phase diffusion constant, quantifying coherence, and the Lyapunov exponent, quantifying reliability, can be efficiently controlled but their ratio remains constant. Thus, an "uncertainty principle" can be formulated: the loss of reliability occurs when coherence is enhanced and, vice versa, coherence is weakened when reliability is enhanced. Treatment of this principle for ensembles of oscillators synchronized by common noise or global coupling reveals a substantial difference between the cases of slightly non-identical oscillators and identical ones with intrinsic noise.Comment: 10 pages, 5 figure

    Programmable probiotics for detection of cancer in urine

    Get PDF
    Rapid advances in the forward engineering of genetic circuitry in living cells has positioned synthetic biology as a potential means to solve numerous biomedical problems, including disease diagnosis and therapy. One challenge in exploiting synthetic biology for translational applications is to engineer microbes that are well tolerated by patients and seamlessly integrate with existing clinical methods. We use the safe and widely used probiotic Escherichia coli Nissle 1917 to develop an orally administered diagnostic that can noninvasively indicate the presence of liver metastasis by producing easily detectable signals in urine. Our microbial diagnostic generated a high-contrast urine signal through selective expansion in liver metastases (10 6 -fold enrichment) and high expression of a lacZ reporter maintained by engineering a stable plasmid system. The lacZ reporter cleaves a substrate to produce a small molecule that can be detected in urine. E. coli Nissle 1917 robustly colonized tumor tissue in rodent models of liver metastasis after oral delivery but did not colonize healthy organs or fibrotic liver tissue. We saw no deleterious health effects on the mice for more than 12 months after oral delivery. Our results demonstrate that probiotics can be programmed to safely and selectively deliver synthetic gene circuits to diseased tissue microenvironments in vivo
    corecore