830 research outputs found
Bloch inductance in small-capacitance Josephson junctions
We show that the electrical impedance of a small-capacitance Josephson
junction includes besides the capacitive term also an inductive
term . Similar to the known Bloch capacitance , the Bloch
inductance also depends periodically on the quasicharge , and its
maximum value achieved at always exceeds the value of
the Josephson inductance of this junction at fixed . The
effect of the Bloch inductance on the dynamics of a single junction and a
one-dimensional array is described.Comment: 5 pages incl. 3 fig
Josephson tunnel junctions with nonlinear damping for RSFQ-qubit circuit applications
We demonstrate that shunting of Superconductor-Insulator-Superconductor
Josephson junctions by Superconductor-Insulator-Normal metal (S-I-N) structures
having pronounced non-linear I-V characteristics can remarkably modify the
Josephson dynamics. In the regime of Josephson generation the phase behaves as
an overdamped coordinate, while in the superconducting state the damping and
current noise are strikingly small, that is vitally important for application
of such junctions for readout and control of Josephson qubits. Superconducting
Nb/AlO/Nb junction shunted by Nb/AlO/AuPd junction of S-I-N type
was fabricated and, in agreement with our model, exhibited non-hysteretic I-V
characteristics at temperatures down to at least 1.4 K.Comment: 4 pages incl. 3 figure
Aluminum Single Electron Transistors with Islands Isolated from a Substrate
The low-frequency noise figures of single-electron transistors
(electrometers) of traditional planar and new stacked geometry were compared.
We observed a correlation between the charge noise and the contact area of the
transistor island with a dielectric substrate in the set of Al transistors
located on the same chip and having almost similar electric parameters. We have
found that the smaller the contact area the lower the noise level of the
transistor. The lowest noise value 8*10E-6 e/sqrt(Hz) at f = 10 Hz. has been
measured in a stacked transistor with an island which was completely isolated
from a substrate. Our measurements have unambiguously indicated that the
dominant source of the background charge fluctuations is associated with a
dielectric substrateComment: Review paper, latex, 10 pages, 7 figures, to be publ. in JLTP, 2000;
Proceeding of "Electron Transport in Mesoscopic Systems", August 12-15, 1999
Geteborg, Sweden, http://fy.chalmers.se/meso_satellite/index.html See also
LT22 manuscript: http://lt22.hut.fi/cgi/view?id=S1113
Josephson charge-phase qubit with radio frequency readout: coupling and decoherence
The charge-phase Josephson qubit based on a superconducting single charge
transistor inserted in a low-inductance superconducting loop is considered. The
loop is inductively coupled to a radio-frequency driven tank circuit enabling
the readout of the qubit states by measuring the effective Josephson inductance
of the transistor. The effect of qubit dephasing and relaxation due to electric
and magnetic control lines as well as the measuring system is evaluated.
Recommendations for operation of the qubit in magic points producing minimum
decoherence are given.Comment: 11 pages incl. 6 fig
Cooper pair cotunneling in single charge transistors with dissipative electromagnetic environment
We observed current-voltage characteristics of superconducting single charge
transistors with on-chip resistors of R about R_Q = h/4e^2 = 6.45 kOhm, which
are explained in terms of Cooper-pair cotunneling. Both the effective strength
of Josephson coupling and the cotunneling current are modulated by the
gate-induced charge on the transistor island. For increasing values of the
resistance R we found the Cooper pair current at small transport voltages to be
dramatically suppressed.Comment: 4 pages and 2 figure
Single-charge devices with ultrasmall Nb/AlOx/Nb trilayer Josephson junctions
Josephson junction transistors and 50-junction arrays with linear junction
dimensions from 200 nm down to 70 nm were fabricated from standard Nb/AlOx/Nb
trilayers. The fabrication process includes electron beam lithography, dry
etching, anodization, and planarization by chemical-mechanical polishing. The
samples were characterized at temperatures down to 25 mK. In general, all
junctions are of high quality and their I-U characteristics show low leakage
currents and high superconducting energy gap values of 1.35 meV. The
characteristics of the transistors and arrays exhibit some features in the
subgap area, associated with tunneling of Cooper pairs, quasiparticles and
their combinations due to the redistribution of the bias voltage between the
junctions. Total island capacitances of the transistor samples ranged from 1.5
fF to 4 fF, depending on the junction sizes. Devices made of junctions with
linear dimensions below 100 nm by 100 nm demonstrate a remarkable
single-electron behavior in both superconducting and normal state. We also
investigated the area dependence of the junction capacitances for transistor
and array samples.Comment: 19 pages incl. 2 tables and 11 figure
Metallic single-electron transistor without traditional tunnel barriers
We report on a new type of single-electron transistor (SET) comprising two
highly resistive Cr thin-film strips (~ 1um long) connecting a 1 um-long Al
island to two Al outer electrodes. These resistors replace small-area oxide
tunnel junctions of traditional SETs. Our transistor with a total asymptotic
resistance of 110 kOhm showed a very sharp Coulomb blockade and reproducible,
deep and strictly e-periodic gate modulation in wide ranges of bias currents I
and gate voltages V_g. In the Coulomb blockade region (|V| < 0.5 mV), we
observed a strong suppression of the cotunneling current allowing appreciable
modulation curves V-V_g to be measured at currents I as low as 100 fA. The
noise figure of our SET was found to be similar to that of typical Al/AlOx/Al
single-electron transistors.Comment: 5 pages incl. 4 fig
Noise in Al single electron transistors of stacked design
We have fabricated and examined several Al single electron transistors whose
small islands were positioned on top of a counter electrode and hence did not
come into contact with a dielectric substrate. The equivalent charge noise
figure of all transistors turned out to be surprisingly low, (2.5 - 7)*10E-5
e/sqrt(Hz) at f = 10 Hz. Although the lowest detected noise originates mostly
from fluctuations of background charge, the noise contribution of the tunnel
junction conductances was, on occasion, found to be dominant.Comment: 4 pages of text with 1 table and 5 figure
Radio-frequency Bloch-transistor electrometer
A quantum-limited electrometer based on charge modulation of the Josephson
supercurrent in the Bloch transistor inserted into a superconducting ring is
proposed. As this ring is inductive coupled to a high-Q resonance tank circuit,
the variations of the charge on the transistor island (input signal) are
converted into variations of amplitude and phase of radio-frequency
oscillations in the tank. These variations are amplified and then detected. The
output noise, the back-action fluctuations and their cross-correlation are
computed. It is shown that our device enables measurements of the charge with a
sensitivity which is determined by the energy resolution of its amplifier, that
can be reduced down to the standard quantum limit of \hbar/2. On the basis of
this setup a "back-action-evading" scheme of the charge measurements is
proposed.Comment: 5 pages incl. 2 figure
Dynamics of Josephson junctions and single-flux-quantum networks with superconductor-insulator-normal metal junction shunts
Within the framework of the microscopic model of tunneling, we modelled the
behavior of the Josephson junction shunted by the
Superconductor-Insulator-Normal metal (SIN) tunnel junction. We found that the
electromagnetic impedance of the SIN junction yields both the
frequency-dependent damping and dynamic reactance which leads to an increase in
the effective capacitance of the circuit. We calculated the dc I-V curves and
transient characteristics of these circuits and explained their quantitative
differences to the curves obtained within the resistively shunted junction
model. The correct operation of the basic single-flux-quanta circuits with such
SIN-shunted junctions, i.e. the Josephson transmission line and the toggle
flip-flop, have also been modelled.Comment: 8 pages incl. 7 figure
- …