9,882 research outputs found

    Optical imaging of resonant electrical carrier injection into individual quantum dots

    Full text link
    We image the micro-electroluminescence (EL) spectra of self-assembled InAs quantum dots (QDs) embedded in the intrinsic region of a GaAs p-i-n diode and demonstrate optical detection of resonant carrier injection into a single QD. Resonant tunneling of electrons and holes into the QDs at bias voltages below the flat-band condition leads to sharp EL lines characteristic of individual QDs, accompanied by a spatial fragmentation of the surface EL emission into small and discrete light- emitting areas, each with its own spectral fingerprint and Stark shift. We explain this behavior in terms of Coulomb interaction effects and the selective excitation of a small number of QDs within the ensemble due to preferential resonant tunneling paths for carriers.Comment: 4 page

    Compton scattering of twisted light: angular distribution and polarization of scattered photons

    Full text link
    Compton scattering of twisted photons is investigated within a non-relativistic framework using first-order perturbation theory. We formulate the problem in the density matrix theory, which enables one to gain new insights into scattering processes of twisted particles by exploiting the symmetries of the system. In particular, we analyze how the angular distribution and polarization of the scattered photons are affected by the parameters of the initial beam such as the opening angle and the projection of orbital angular momentum. We present analytical and numerical results for the angular distribution and the polarization of Compton scattered photons for initially twisted light and compare them with the standard case of plane-wave light

    PAHs and star formation in the HII regions of nearby galaxies M83 and M33

    Get PDF
    We present mid-infrared (MIR) spectra of HII regions within star-forming galaxies M83 and M33. Their emission features are compared with Galactic and extragalactic HII regions, HII-type galaxies, starburst galaxies, and Seyfert/LINER type galaxies. Our main results are as follows: (i) the M33 and M83 HII regions lie in between Seyfert/LINER galaxies and HII-type galaxies in the 7.7/11.3 - 6.2/11.3 plane, while the different sub-samples exhibiting different 7.7/6.2 ratios; (ii) Using the NASA Ames PAH IR Spectroscopic database, we demonstrate that the 6.2/7.7 ratio does not effectively track PAH size, but the 11.3/3.3 PAH ratio does; (iii) variations on the 17 μ\mum PAH band depends on object type; however, there is no dependence on metallicity for both extragalactic HII regions and galaxies; (iv) the PAH/VSG intensity ratio decreases with the hardness of the radiation field and galactocentric radius (Rg), yet the ionization alone cannot account for the variation seen in all of our sources; (v) the relative strength of PAH features does not change significantly with increasing radiation hardness, as measured through the [NeIII]/[NeII] ratio and the ionization index; (vi) We present PAH SFR calibrations based on the tight correlation between the 6.2, 7.7, and 11.3 μ\mum PAH luminosities with the 24 μ\mum luminosity and the combination of the 24 μ\mum and Hα\alpha luminosity; (vii) Based on the total luminosity from PAH and FIR emission, we argue that extragalactic HII regions are more suitable templates in modeling and interpreting the large scale properties of galaxies compared to Galactic HII regions.Comment: 26 pages, 24 figures, 6 tables. Accepted for publication in MNRA

    A scalable, high-speed measurement-based quantum computer using trapped ions

    Full text link
    We describe a scalable, high-speed, and robust architecture for measurement-based quantum-computing with trapped ions. Measurement-based architectures offer a way to speed-up operation of a quantum computer significantly by parallelizing the slow entangling operations and transferring the speed requirement to fast measurement of qubits. We show that a 3D cluster state suitable for fault-tolerant measurement-based quantum computing can be implemented on a 2D array of ion traps. We propose the projective measurement of ions via multi-photon photoionization for nanosecond operation and discuss the viability of such a scheme for Ca ions.Comment: 4 pages, 3 figure

    Excitations in the quantum paramagnetic phase of the quasi-one-dimensional Ising magnet CoNb2_2O6_6 in a transverse field: Geometric frustration and quantum renormalization effects

    Full text link
    The quasi-one-dimensional (1D) Ising ferromagnet CoNb2_2O6_6 has recently been driven via applied transverse magnetic fields through a continuous quantum phase transition from spontaneous magnetic order to a quantum paramagnet, and dramatic changes were observed in the spin dynamics, characteristic of weakly perturbed 1D Ising quantum criticality. We report here extensive single-crystal inelastic neutron scattering measurements of the magnetic excitations throughout the three-dimensional (3D) Brillouin zone in the quantum paramagnetic phase just above the critical field to characterize the effects of the finite interchain couplings. In this phase, we observe that excitations have a sharp, resolution-limited line shape at low energies and over most of the dispersion bandwidth, as expected for spin-flip quasiparticles. We map the full bandwidth along the strongly dispersive chain direction and resolve clear modulations of the dispersions in the plane normal to the chains, characteristic of frustrated interchain couplings in an antiferromagnetic isosceles triangular lattice. The dispersions can be well parametrized using a linear spin-wave model that includes interchain couplings and further neighbor exchanges. The observed dispersion bandwidth along the chain direction is smaller than that predicted by a linear spin-wave model using exchange values determined at zero field, and this effect is attributed to quantum renormalization of the dispersion beyond the spin-wave approximation in fields slightly above the critical field, where quantum fluctuations are still significant.Comment: 11 pages, 6 figures. Updated references. Minor changes to text and figure

    Herschel PACS and SPIRE spectroscopy of the Photodissociation Regions associated with S 106 and IRAS 23133+6050

    Get PDF
    Photodissociation regions (PDRs) contain a large fraction of all of the interstellar matter in galaxies. Classical examples include the boundaries between ionized regions and molecular clouds in regions of massive star formation, marking the point where all of the photons energetic enough to ionize hydrogen have been absorbed. In this paper we determine the physical properties of the PDRs associated with the star forming regions IRAS 23133+6050 and S 106 and present them in the context of other Galactic PDRs associated with massive star forming regions. We employ Herschel PACS and SPIRE spectroscopic observations to construct a full 55-650 {\mu}m spectrum of each object from which we measure the PDR cooling lines, other fine- structure lines, CO lines and the total far-infrared flux. These measurements are then compared to standard PDR models. Subsequently detailed numerical PDR models are compared to these predictions, yielding additional insights into the dominant thermal processes in the PDRs and their structures. We find that the PDRs of each object are very similar, and can be characterized by a two-phase PDR model with a very dense, highly UV irradiated phase (n ∼\sim 10^6 cm^(-3), G0_0 ∼\sim 10^5) interspersed within a lower density, weaker radiation field phase (n ∼\sim 10^4 cm^(-3), G0_0 ∼\sim 10^4). We employed two different numerical models to investigate the data, firstly we used RADEX models to fit the peak of the 12^{12}CO ladder, which in conjunction with the properties derived yielded a temperature of around 300 K. Subsequent numerical modeling with a full PDR model revealed that the dense phase has a filling factor of around 0.6 in both objects. The shape of the 12^{12}CO ladder was consistent with these components with heating dominated by grain photoelectric heating. An extra excitation component for the highest J lines (J > 20) is required for S 106.Comment: 20 pages, 10 figures, A&A Accepte

    Rapid root elongation by phreatophyte seedlings does not imply tolerance of water table decline

    Get PDF
    Key message Despite high rates of root elongation during phreatophyte establishment once connection to groundwater has occurred and leaf area develops, seedlings demonstrate limited capacity for root elongation in response to groundwater decline. Abstract In a water-limited environment, rapid root elongation immediately after germination can be critical for a plant to reach deeper water sources such as a water table to avoid water deficit stress. However, once plants have accessed a water table, their continued survival may depend on their ability to adapt their root distribution to changes in the depth to a water table. In glasshouse experiments using two Banksia species with contrasting water requirements, we investigated (1) the rate of root elongation by young seedlings in the presence of a shallow water table, and (2) whole plant response to rapid water table decline using older seedlings that had established root contact with a water table. The results of the first experiment agree with the hypothesis that the facultative phreatophyte, B. attenuata, has a faster rate of root elongation than the obligate phreatophyte, B. littoralis. These differences are likely related to the contrasting habitat preferences of the two species. Older seedlings in the second experiment demonstrated a water-saving response to a declining water table, rapidly closing stomata to limit water loss. Additionally, roots did not elongate to follow the water table and plants were quickly disconnected from the saturated zone. For the two phreatophytic Banksia species, the capacity for rapid growth by young seedlings did not translate to an ability for established seedlings to adapt their root distribution to survive rapid water table decline
    • …
    corecore