8,451 research outputs found
Weak magnetism phenomena in heavy-fermion superconductors: selected SR studies
The behavior of the so-called weak moment antiferromagnetic states, observed
in the heavy-fermion superconductors UPt and URuSi, is discussed in
view of recent SR results obtained as function of control parameters like
chemical substitution and external pressure. In UPt, the Pd substitution
for Pt reveals the dynamical character of the weak moment order. On the other
hand, SR measurements performed on samples in which Th substitutes U
suggest that crystallographic disorder on the magnetic sites deeply affects the
fluctuation timescale. In URuSi, a phase separation between the
so-called hidden order state, present at ambient pressure, and an
antiferromagnetic state, occurring under pressure, is observed. In view of the
pressure-temperature phase diagram obtained by SR, it is deduced that the
respective order parameters have different symmetries.Comment: To appear in: J. Phys.: Cond. Matte
The new versatile general purpose surface-muon instrument (GPS) based on silicon photomultipliers for SR measurements on a continuous-wave beam
We report on the design and commissioning of a new spectrometer for muon-spin
relaxation/rotation studies installed at the Swiss Muon Source (SS) of the
Paul Scherrer Institute (PSI, Switzerland). This new instrument is essentially
a new design and replaces the old general-purpose surface-muon instrument (GPS)
which has been for long the workhorse of the SR user facility at PSI. By
making use of muon and positron detectors made of plastic scintillators read
out by silicon photomultipliers (SiPMs), a time resolution of the complete
instrument of about 160 ps (standard deviation) could be achieved. In addition,
the absence of light guides, which are needed in traditionally built SR
instrument to deliver the scintillation light to photomultiplier tubes located
outside magnetic fields applied, allowed us to design a compact instrument with
a detector set covering an increased solid angle compared to the old GPS.Comment: 11 pages, 11 figure
Das Internet in der Biologielehrerausbildung - ein Zwischenbericht
Auch in der universitären Lehre nimmt die Bedeutung des Internet ständig zu. Im Beitrag werden verschiedene Möglichkeiten beschrieben, wie das world wide web schon heute in der Biologielehrerausbildung eingesetzt wird. Vorgestellt werden internetunterstützte Lehre und verschiedene Formen der internetgestützten Lehre, wie Teleteaching, Expertensysteme, virtuelle Seminare und WBT
Two-channel point-contact tunneling theory of superconductors
We introduce a two-channel tunneling model to generalize the widely used BTK
theory of point-contact conductance between a normal metal contact and
superconductor. Tunneling of electrons can occur via localized surface states
or directly, resulting in a Fano resonance in the differential conductance
. We present an analysis of within the two-channel model when
applied to soft point-contacts between normal metallic silver particles and
prototypical heavy-fermion superconductors CeCoIn and CeRhIn at high
pressures. In the normal state the Fano line shape of the measured is well
described by a model with two tunneling channels and a large
temperature-independent background conductance. In the superconducting state a
strongly suppressed Andreev reflection signal is explained by the presence of
the background conductance. We report Andreev signal in CeCoIn consistent
with standard -wave pairing, assuming an equal mixture of
tunneling into [100] and [110] crystallographic interfaces. Whereas in
CeRhIn at 1.8 and 2.0 GPa the signal is described by a -wave
gap with reduced nodal region, i.e., increased slope of the gap opening on the
Fermi surface. A possibility is that the shape of the high-pressure Andreev
signal is affected by the proximity of a line of quantum critical points that
extends from 1.75 to 2.3 GPa, which is not accounted for in our description of
the heavy-fermion superconductor.Comment: 13 pages, 13 figure
Local oxidation of Ga[Al]As heterostructures with modulated tip-sample voltages
Nanolithography based on local oxidation with a scanning force microscope has
been performed on an undoped GaAs wafer and a Ga[Al]As heterostructure with an
undoped GaAs cap layer and a shallow two-dimensional electron gas. The oxide
growth and the resulting electronic properties of the patterned structures are
compared for constant and modulated voltage applied to the conductive tip of
the scanning force microscope. All the lithography has been performed in
non-contact mode. Modulating the applied voltage enhances the aspect ratio of
the oxide lines, which significantly strengthens the insulating properties of
the lines on GaAs. In addition, the oxidation process is found to be more
reliable and reproducible. Using this technique, a quantum point contact and a
quantum wire have been defined and the electronic stability, the confinement
potential and the electrical tunability are demonstrated to be similar to the
oxidation with constant voltage.Comment: 7 pages, 7 figures, accepted by J. Appl. Phy
- …