8,451 research outputs found

    Weak magnetism phenomena in heavy-fermion superconductors: selected μ\muSR studies

    Full text link
    The behavior of the so-called weak moment antiferromagnetic states, observed in the heavy-fermion superconductors UPt3_3 and URu2_2Si2_2, is discussed in view of recent μ\muSR results obtained as function of control parameters like chemical substitution and external pressure. In UPt3_3, the Pd substitution for Pt reveals the dynamical character of the weak moment order. On the other hand, μ\muSR measurements performed on samples in which Th substitutes U suggest that crystallographic disorder on the magnetic sites deeply affects the fluctuation timescale. In URu2_2Si2_2, a phase separation between the so-called hidden order state, present at ambient pressure, and an antiferromagnetic state, occurring under pressure, is observed. In view of the pressure-temperature phase diagram obtained by μ\muSR, it is deduced that the respective order parameters have different symmetries.Comment: To appear in: J. Phys.: Cond. Matte

    The new versatile general purpose surface-muon instrument (GPS) based on silicon photomultipliers for μ{\mu}SR measurements on a continuous-wave beam

    Full text link
    We report on the design and commissioning of a new spectrometer for muon-spin relaxation/rotation studies installed at the Swiss Muon Source (Sμ\muS) of the Paul Scherrer Institute (PSI, Switzerland). This new instrument is essentially a new design and replaces the old general-purpose surface-muon instrument (GPS) which has been for long the workhorse of the μ\muSR user facility at PSI. By making use of muon and positron detectors made of plastic scintillators read out by silicon photomultipliers (SiPMs), a time resolution of the complete instrument of about 160 ps (standard deviation) could be achieved. In addition, the absence of light guides, which are needed in traditionally built μ\muSR instrument to deliver the scintillation light to photomultiplier tubes located outside magnetic fields applied, allowed us to design a compact instrument with a detector set covering an increased solid angle compared to the old GPS.Comment: 11 pages, 11 figure

    Das Internet in der Biologielehrerausbildung - ein Zwischenbericht

    Get PDF
    Auch in der universitären Lehre nimmt die Bedeutung des Internet ständig zu. Im Beitrag werden verschiedene Möglichkeiten beschrieben, wie das world wide web schon heute in der Biologielehrerausbildung eingesetzt wird. Vorgestellt werden internetunterstützte Lehre und verschiedene Formen der internetgestützten Lehre, wie Teleteaching, Expertensysteme, virtuelle Seminare und WBT

    Two-channel point-contact tunneling theory of superconductors

    Get PDF
    We introduce a two-channel tunneling model to generalize the widely used BTK theory of point-contact conductance between a normal metal contact and superconductor. Tunneling of electrons can occur via localized surface states or directly, resulting in a Fano resonance in the differential conductance G=dI/dVG=dI/dV. We present an analysis of GG within the two-channel model when applied to soft point-contacts between normal metallic silver particles and prototypical heavy-fermion superconductors CeCoIn5_5 and CeRhIn5_5 at high pressures. In the normal state the Fano line shape of the measured GG is well described by a model with two tunneling channels and a large temperature-independent background conductance. In the superconducting state a strongly suppressed Andreev reflection signal is explained by the presence of the background conductance. We report Andreev signal in CeCoIn5_5 consistent with standard dx2−y2d_{x^2-y^2}-wave pairing, assuming an equal mixture of tunneling into [100] and [110] crystallographic interfaces. Whereas in CeRhIn5_5 at 1.8 and 2.0 GPa the signal is described by a dx2−y2d_{x^2-y^2}-wave gap with reduced nodal region, i.e., increased slope of the gap opening on the Fermi surface. A possibility is that the shape of the high-pressure Andreev signal is affected by the proximity of a line of quantum critical points that extends from 1.75 to 2.3 GPa, which is not accounted for in our description of the heavy-fermion superconductor.Comment: 13 pages, 13 figure

    Local oxidation of Ga[Al]As heterostructures with modulated tip-sample voltages

    Full text link
    Nanolithography based on local oxidation with a scanning force microscope has been performed on an undoped GaAs wafer and a Ga[Al]As heterostructure with an undoped GaAs cap layer and a shallow two-dimensional electron gas. The oxide growth and the resulting electronic properties of the patterned structures are compared for constant and modulated voltage applied to the conductive tip of the scanning force microscope. All the lithography has been performed in non-contact mode. Modulating the applied voltage enhances the aspect ratio of the oxide lines, which significantly strengthens the insulating properties of the lines on GaAs. In addition, the oxidation process is found to be more reliable and reproducible. Using this technique, a quantum point contact and a quantum wire have been defined and the electronic stability, the confinement potential and the electrical tunability are demonstrated to be similar to the oxidation with constant voltage.Comment: 7 pages, 7 figures, accepted by J. Appl. Phy
    • …
    corecore