133 research outputs found
Retrospective observational study of chloral hydrate use in mechanically-ventilated pediatric intensive care unit (PICU) patients 2012–2017
Introduction: Chloral hydrate (CH) has long been utilized as a pediatric procedural sedation agent. However, very little is published describing CH use in a pediatric intensive care unit (PICU) setting. The aim of this retrospective observational cohort study was to investigate and describe the use of CH in mechanically-ventilated, critically ill children at a large pediatric tertiary referral hospital.Methods: Data were extracted from the hospital electronic medical record and a locally maintained registry of all children admitted to the PICU between 2012 and 2017. Patients admitted to the cardiovascular ICU were not included in this review. The clinical and pharmacy data for 3806 consecutive PICU admissions of mechanically-ventilated, critically ill children were examined.Results: 283 admissions received CH during their first ICU stay. CH-exposed children were younger (16 months vs. 35 months, p < 0.001), the median total dose of CH (indexed to duration of ventilation) was 11 mg/kg/day, the median time to first CH dose was 3 days and more CH doses were administered at night (1112 vs. 958, p < 0.001). We constructed a propensity score to adjust for the differences in patients with and without CH exposure using logistic regression including variables of age, sex, diagnosis, and PRISM3 score. After adjustment, the median length of mechanical ventilation was 5 days longer in the CH-exposed group (95% Confidence Interval [CI] 4–6) compared to unexposed CH patients. Similarly, the median length of ICU duration was 9.4 days longer (95% CI 7.1–11.6) and median length of hospital admission duration was 13.2 days longer (95% CI 7.8–18.6) in CH-exposed patients compared to CH-non-exposed. After adjustment, CH-exposed patients had a 9% higher median exposure to HFOV (95% CI 3.9–14.6), but did not have higher median exposures to new tracheostomy (95% CI −0.4–2.2) or ECMO (95% CI −0.2–5.0).Discussion: As part of an extended sedation regimen in mechanically-ventilated and critically ill children, CH is associated with somewhat higher complexity of illness and longer ICU durations
Investigation of radioactivity-induced backgrounds in EXO-200
The search for neutrinoless double-beta decay (0{\nu}{\beta}{\beta}) requires
extremely low background and a good understanding of their sources and their
influence on the rate in the region of parameter space relevant to the
0{\nu}{\beta}{\beta} signal. We report on studies of various {\beta}- and
{\gamma}-backgrounds in the liquid- xenon-based EXO-200 0{\nu}{\beta}{\beta}
experiment. With this work we try to better understand the location and
strength of specific background sources and compare the conclusions to
radioassay results taken before and during detector construction. Finally, we
discuss the implications of these studies for EXO-200 as well as for the
next-generation, tonne-scale nEXO detector.Comment: 9 pages, 7 figures, 3 table
Deep Neural Networks for Energy and Position Reconstruction in EXO-200
We apply deep neural networks (DNN) to data from the EXO-200 experiment. In
the studied cases, the DNN is able to reconstruct the relevant parameters -
total energy and position - directly from raw digitized waveforms, with minimal
exceptions. For the first time, the developed algorithms are evaluated on real
detector calibration data. The accuracy of reconstruction either reaches or
exceeds what was achieved by the conventional approaches developed by EXO-200
over the course of the experiment. Most existing DNN approaches to event
reconstruction and classification in particle physics are trained on Monte
Carlo simulated events. Such algorithms are inherently limited by the accuracy
of the simulation. We describe a unique approach that, in an experiment such as
EXO-200, allows to successfully perform certain reconstruction and analysis
tasks by training the network on waveforms from experimental data, either
reducing or eliminating the reliance on the Monte Carlo.Comment: Accepted version. 33 pages, 28 figure
Search for nucleon decays with EXO-200
A search for instability of nucleons bound in Xe nuclei is reported
with 223 kgyr exposure of Xe in the EXO-200 experiment. Lifetime
limits of 3.3 and 1.9 yrs are established for
nucleon decay to Sb and Te, respectively. These are the most
stringent to date, exceeding the prior decay limits by a factor of 9 and 7,
respectively
- …