5,805 research outputs found
Improved Soundness for QMA with Multiple Provers
We present three contributions to the understanding of QMA with multiple
provers:
1) We give a tight soundness analysis of the protocol of [Blier and Tapp,
ICQNM '09], yielding a soundness gap Omega(1/N^2). Our improvement is achieved
without the use of an instance with a constant soundness gap (i.e., without
using a PCP).
2) We give a tight soundness analysis of the protocol of [Chen and Drucker,
ArXiV '10], thereby improving their result from a monolithic protocol where
Theta(sqrt(N)) provers are needed in order to have any soundness gap, to a
protocol with a smooth trade-off between the number of provers k and a
soundness gap Omega(k^2/N), as long as k>=Omega(log N). (And, when
k=Theta(sqrt(N)), we recover the original parameters of Chen and Drucker.)
3) We make progress towards an open question of [Aaronson et al., ToC '09]
about what kinds of NP-complete problems are amenable to sublinear
multiple-prover QMA protocols, by observing that a large class of such examples
can easily be derived from results already in the PCP literature - namely, at
least the languages recognized by a non-deterministic RAMs in quasilinear time.Comment: 24 pages; comments welcom
Many-body models for molecular nanomagnets
We present a flexible and effective ab-initio scheme to build many-body
models for molecular nanomagnets, and to calculate magnetic exchange couplings
and zero-field splittings. It is based on using localized Foster-Boys orbitals
as one-electron basis. We apply this scheme to three paradigmatic systems, the
antiferromagnetic rings Cr8 and Cr7Ni and the single molecule magnet Fe4. In
all cases we identify the essential magnetic interactions and find excellent
agreement with experiments.Comment: 5 pages, 3 figure
Electromechanical Quantum Simulators
Digital quantum simulators are among the most appealing applications of a
quantum computer. Here we propose a universal, scalable, and integrated quantum
computing platform based on tunable nonlinear electromechanical
nano-oscillators. It is shown that very high operational fidelities for single
and two qubits gates can be achieved in a minimal architecture, where qubits
are encoded in the anharmonic vibrational modes of mechanical nanoresonators,
whose effective coupling is mediated by virtual fluctuations of an intermediate
superconducting artificial atom. An effective scheme to induce large
single-phonon nonlinearities in nano-electromechanical devices is explicitly
discussed, thus opening the route to experimental investigation in this
direction. Finally, we explicitly show the very high fidelities that can be
reached for the digital quantum simulation of model Hamiltonians, by using
realistic experimental parameters in state-of-the art devices, and considering
the transverse field Ising model as a paradigmatic example.Comment: 14 pages, 8 figure
Calculation code for helically coiled heat recovery boilers
This paper describes a calculation code developed for helically coiled heat recovery boilers fed with exhaust gases from internal combustion engines, gas turbines or industrial processes. The code carries out the thermal rating calculation of the boiler by means of a one-dimensional model applicable to either water or thermal oil heating or steam generation in a once-through configuration. The paper is focused on the first case, in which cold fluid phase-change does not occur, and illustrates how the rating program can be helpful to improve the boiler design with respect to the current standard, allowing a reduction of several percentage points in the calculated heat transfer area (and correspondingly weight and material cost) required for a given duty. © 2013 The Authors
Digital quantum simulators in a scalable architecture of hybrid spin-photon qubits
Resolving quantum many-body problems represents one of the greatest
challenges in physics and physical chemistry, due to the prohibitively large
computational resources that would be required by using classical computers. A
solution has been foreseen by directly simulating the time evolution through
sequences of quantum gates applied to arrays of qubits, i.e. by implementing a
digital quantum simulator. Superconducting circuits and resonators are emerging
as an extremely-promising platform for quantum computation architectures, but a
digital quantum simulator proposal that is straightforwardly scalable,
universal, and realizable with state-of-the-art technology is presently
lacking. Here we propose a viable scheme to implement a universal quantum
simulator with hybrid spin-photon qubits in an array of superconducting
resonators, which is intrinsically scalable and allows for local control. As
representative examples we consider the transverse-field Ising model, a spin-1
Hamiltonian, and the two-dimensional Hubbard model; for these, we numerically
simulate the scheme by including the main sources of decoherence. In addition,
we show how to circumvent the potentially harmful effects of inhomogeneous
broadening of the spin systems
Slow breathing and hypoxic challenge: cardiorespiratory consequences and their central neural substrates
Controlled slow breathing (at 6/min, a rate frequently adopted during yoga practice) can benefit cardiovascular function, including responses to hypoxia. We tested the neural substrates of cardiorespiratory control in humans during volitional controlled breathing and hypoxic challenge using functional magnetic resonance imaging (fMRI). Twenty healthy volunteers were scanned during paced (slow and normal rate) breathing and during spontaneous breathing of normoxic and hypoxic (13% inspired O2) air. Cardiovascular and respiratory measures were acquired concurrently, including beat-to-beat blood pressure from a subset of participants (N = 7). Slow breathing was associated with increased tidal ventilatory volume. Induced hypoxia raised heart rate and suppressed heart rate variability. Within the brain, slow breathing activated dorsal pons, periaqueductal grey matter, cerebellum, hypothalamus, thalamus and lateral and anterior insular cortices. Blocks of hypoxia activated mid pons, bilateral amygdalae, anterior insular and occipitotemporal cortices. Interaction between slow breathing and hypoxia was expressed in ventral striatal and frontal polar activity. Across conditions, within brainstem, dorsal medullary and pontine activity correlated with tidal volume and inversely with heart rate. Activity in rostroventral medulla correlated with beat-to-beat blood pressure and heart rate variability. Widespread insula and striatal activity tracked decreases in heart rate, while subregions of insular cortex correlated with momentary increases in tidal volume. Our findings define slow breathing effects on central and cardiovascular responses to hypoxic challenge. They highlight the recruitment of discrete brainstem nuclei to cardiorespiratory control, and the engagement of corticostriatal circuitry in support of physiological responses that accompany breathing regulation during hypoxic challenge
The Importance of Suspension Stability for the Hot-wire Measurements of Thermal Conductivity of Colloidal Suspensions.
The development of advanced heat transfer fluids with enhanced thermal conductivity is essential to improve the effective heat transfer behavior of conventional coolants. Thermal conductivity enhancement has been reported for colloidal suspensions formulated with different nanoparticles. Reliable thermal conductivity measurement requires that the suspension is stable against sedimentation during the measurement since particle sedimentation may effect the experimental results. The present study proposes a criterion to ensure that thermal conductivity data is independent of the particle sedimentation. A measuring device based on the transient hot-wire method is designed to allow vertical and horizontal thermal conductivity data collection. Our investigation shows that the thermal conductivity measurements in the horizontal and vertical configurations are almost identical when the colloidal suspension is stable while they differ for unstable systems
Circadian and Metabolic Effects of Light: Implications in Weight Homeostasis and Health
Daily interactions between the hypothalamic circadian clock at the suprachiasmatic nucleus (SCN) and peripheral circadian oscillators regulate physiology and metabolism to set temporal variations in homeostatic regulation. Phase coherence of these circadian oscillators is achieved by the entrainment of the SCN to the environmental 24-h light:dark (LD) cycle, coupled through downstream neural, neuroendocrine, and autonomic outputs. The SCN coordinate activity and feeding rhythms, thus setting the timing of food intake, energy expenditure, thermogenesis, and active and basal metabolism. In this work, we will discuss evidences exploring the impact of different photic entrainment conditions on energy metabolism. The steady-state interaction between the LD cycle and the SCN is essential for health and wellbeing, as its chronic misalignment disrupts the circadian organization at different levels. For instance, in nocturnal rodents, non-24 h protocols (i.e., LD cycles of different durations, or chronic jet-lag simulations) might generate forced desynchronization of oscillators from the behavioral to the metabolic level. Even seemingly subtle photic manipulations, as the exposure to a "dim light" scotophase, might lead to similar alterations. The daily amount of light integrated by the clock (i.e., the photophase duration) strongly regulates energy metabolism in photoperiodic species. Removing LD cycles under either constant light or darkness, which are routine protocols in chronobiology, can also affect metabolism, and the same happens with disrupted LD cycles (like shiftwork of jetlag) and artificial light at night in humans. A profound knowledge of the photic and metabolic inputs to the clock, as well as its endocrine and autonomic outputs to peripheral oscillators driving energy metabolism, will help us to understand and alleviate circadian health alterations including cardiometabolic diseases, diabetes, and obesity.Fil: Plano, Santiago AndrĂ©s. Pontificia Universidad CatĂłlica Argentina "Santa MarĂa de los Buenos Aires". Instituto de Investigaciones BiomĂ©dicas. Consejo Nacional de Investigaciones CientĂficas y TĂ©cnicas. Oficina de CoordinaciĂłn Administrativa Houssay. Instituto de Investigaciones BiomĂ©dicas; ArgentinaFil: Casiraghi, Leandro Pablo. Universidad Nacional de Quilmes. Departamento de Ciencia y TecnologĂa. Laboratorio de CronobiologĂa; Argentina. Consejo Nacional de Investigaciones CientĂficas y TĂ©cnicas; ArgentinaFil: Garcia Moro, Paula. Universidad Nacional de Quilmes. Departamento de Ciencia y TecnologĂa. Laboratorio de CronobiologĂa; Argentina. Consejo Nacional de Investigaciones CientĂficas y TĂ©cnicas; ArgentinaFil: Paladino, Natalia. Universidad Nacional de Quilmes. Departamento de Ciencia y TecnologĂa. Laboratorio de CronobiologĂa; Argentina. Consejo Nacional de Investigaciones CientĂficas y TĂ©cnicas; ArgentinaFil: Golombek, Diego AndrĂ©s. Universidad Nacional de Quilmes. Departamento de Ciencia y TecnologĂa. Laboratorio de CronobiologĂa; Argentina. Consejo Nacional de Investigaciones CientĂficas y TĂ©cnicas; ArgentinaFil: Chiesa, Juan JosĂ©. Universidad Nacional de Quilmes. Departamento de Ciencia y TecnologĂa. Laboratorio de CronobiologĂa; Argentina. Consejo Nacional de Investigaciones CientĂficas y TĂ©cnicas; Argentin
A Low-Cost Monitoring Platform and Visual Interface to Analyse Thermal Comfort in Smart Building Applications Using a Citizen–Scientist Strategy
Smart building issues are critical for current energy and comfort managing aspects in built environments. Nevertheless, the diffusion of smart monitoring solutions via user-friendly graphical interfaces is still an ongoing issue subject to the need to diffuse a smart building culture and a low-cost series of solutions. This paper proposes a new low-cost IoT sensor network, exploiting Raspberry Pi and Arduino platforms, for collecting real-time data and evaluating specific thermal comfort indicators (PMV and PPD). The overall architecture was accordingly designed, including the hardware setup, the back-end and the Android user interface. Eventually, three distinct prototyping platforms were deployed for initial testing of the general system, and we analysed the obtained results for different building typologies and seasonal periods, based on collected data and users’ preferences. This work is part of a large educational and citizen science activity
- …