51,940 research outputs found
Jordan-Schwinger realizations of three-dimensional polynomial algebras
A three-dimensional polynomial algebra of order is defined by the
commutation relations ,
where is an -th order polynomial in
with the coefficients being constants or central elements of the algebra.
It is shown that two given mutually commuting polynomial algebras of orders
and can be combined to give two distinct -th order polynomial
algebras. This procedure follows from a generalization of the well known
Jordan-Schwinger method of construction of and algebras from
two mutually commuting boson algebras.Comment: 10 pages, LaTeX2
Paramagnetic magnetization signals and curious metastable behaviour in field-cooled magnetization of a single crystal of superconductor 2H-NbSe2
We present here some newer characteristics pertaining to paramagnetic
Meissner effect like response in a single crystal of the low Tc superconducting
compound 2H-NbSe2 via a detailed study of effects of perturbation on the
field-cooled magnetization response. In the temperature range, where an
anomalous paramagnetic magnetization occurs, the field-cooled magnetization
response is found to be highly metastable: it displays a curious tendency to
switch randomly from a given paramagnetic value to a diamagnetic or to a
different paramagnetic value, when the system is perturbed by an impulse of an
externally applied ac field. The new facets revealed in a single crystal of
2H-NbSe2 surprisingly bear a marked resemblance with the characteristics of
magnetization behaviour anticipated for the giant vortex states with multiple
flux quanta predicted to occur in mesoscopic-sized superconducting specimen and
possible transitions amongst such states.Comment: 12 pages, 9 figures, submitted to Journal of Physics: Condensed
Matte
Possible spin-orbit driven spin-liquid ground state in the double perovskite phase of Ba3YIr2O9
We report the structural transformation of hexagonal Ba3YIr2O9 to a cubic
double perovskite form (stable in ambient conditions) under an applied pressure
of 8GPa at 1273K. While the ambient pressure (AP) synthesized sample undergoes
long-range magnetic ordering at 4K, the high pressure(HP) synthesized sample
does not order down to 2K as evidenced from our susceptibility, heat capacity
and nuclear magnetic resonance (NMR) measurements. Further, for the HP sample,
our heat capacity data have the form gamma*T+beta*T3 in the temperature (T)
range of 2-10K with the Sommerfeld coefficient gamma=10mJ/mol-Ir K2. The 89Y
NMR shift has no T-dependence in the range of 4-120K and its spin-lattice
relaxation rate varies linearly with T in the range of 8-45K (above which it is
T-independent). Resistance measurements of both the samples confirm that they
are semiconducting. Our data provide evidence for the formation of a 5d based,
gapless, quantum spin-liquid (QSL) in the cubic (HP) phase of Ba3YIr2O9. In
this picture, the T term in the heat capacity and the linear variation of 89Y
1/T1 arises from excitations out of a spinon Fermi surface. Our findings lend
credence to the theoretical suggestion [G. Chen, R. Pereira, and L. Balents,
Phys. Rev. B 82, 174440 (2010)] that strong spin-orbit coupling can enhance
quantum fluctuations and lead to a QSL state in the double perovskite lattice.Comment: 6 pages 5 figure
- …