737 research outputs found
Initial Chemical Events in the Energetic Material RDX under Shock Loading: Role of Defects
We use the recently developed reactive force field ReaxFF with molecular dynamics (MD) to study the role of voids on the initial chemical events in the high-energy material RDX under shock loading. We find that for strong shocks (particles velocity of 3 km/s) very small gaps (2 nm) lead to important over-heating (~ 1000 K). This over-heating facilitates chemical reactions and leads to a larger production of small molecules (such as NO2, NO, OH) than in perfect crystals shocked with the same strength. The chemical reactions occur after the void has collapsed and the ejected material re-compressed rather than when hot molecules are ejected out of the downstream surface
Development and Validation of ReaxFF Reactive Force Field for Hydrocarbon Chemistry Catalyzed by Nickel
To enable the study of hydrocarbon reactions catalyzed by nickel surfaces and particles using reactive molecular dynamics on thousands of atoms as a function of temperature and pressure, we have developed the ReaxFF reactive force field to describe adsorption, decomposition, reformation and desorption of hydrocarbons as they interact with the nickel surface. The ReaxFF parameters were determined by fitting to the geometries and energy surfaces from quantum mechanics (QM) calculations for a large number of reaction pathways for hydrocarbon molecules chemisorbed onto nickel (111), (100) and (110) surfaces, supplemented with QM equations of state for nickel and nickel carbides. We demonstrate the validity and accuracy of ReaxFF by applying it to study the reaction dynamics of hydrocarbons as catalyzed by nickel particles and surfaces. For the dissociation of methyl on the (111), (100), and stepped (111) surfaces of nickel, we observe the formation of chemisorbed CH plus subsurface carbide. We observe that the (111) surface is the least reactive, the (100) surface has the fastest reaction rates, and the stepped (111) surface has an intermediate reaction rate. The importance of surface defects in accelerating reaction rates is highlighted by these results
Structures, Energetics, and Reaction Barriers for CH_x Bound to the Nickel (111) Surface
To provide a basis for understanding and improving such reactive processes on nickel surfaces as the catalytic
steam reforming of hydrocarbons, the decomposition of hydrocarbons at fuel cell anodes, and the growth of
carbon nanotubes, we report quantum mechanics calculations (PBE flavor of density functional theory, DFT)
of the structures, binding energies, and reaction barriers for all CH_x species on the Ni(111) surface using
periodically infinite slabs. We find that all CH_x species prefer binding to μ3 (3-fold) sites leading to bond
energies ranging from 42.7 kcal/mol for CH_3 to 148.9 kcal/mol for CH (the number of Ni-C bonds is not
well-defined). We find reaction barriers of 18.3 kcal/mol for CH_(3,ad) → CH_(2,ad) + H_(ad) (with ΔE = +1.3 kcal/
mol), 8.2 kcal/mol for CH_(2,ad) → CH_(ad) + H_(ad) (with ΔE = -10.2 kcal/mol) and 32.3 kcal/mol for CH_(ad) → C_(ad)
+ H_(ad) (with ΔE = 11.6 kcal/mol). Thus, CH_(ad) is the stable form of CH_x on the surface. These results are in
good agreement with the experimental data for the thermodynamic stability of small hydrocarbon species
following dissociation of methane on Ni(111) and with the intermediates isolated during the reverse methanation
process
Mechanical properties of connected carbon nanorings via molecular dynamics simulation
Stable, carbon nanotori can be constructed from nanotubes. In theory, such rings could be used to fabricate networks that are extremely flexible and offer a high strength-to-density ratio. As a first step towards realizing such nanochains and nanomaile, the mechanical properties of connected carbon nanorings were investigated via molecular dynamics simulation. The Young's modulus, extensibility and tensile stength of nanorings were estimated under conditions that idealize the constraints of nanochains and nanomaile. The results indicate nanorings are stable under large tensile deformation. The calculated Young's modulus of nanorings was found increase with deformation from 19.43 GPa to 121.94 GPa (without any side constraints) and from 124.98 GPa to 1.56 TPa (with side constraints). The tensile strength of unconstrained and constrained nanorings is estimated to be 5.72 and 8.522 GPa, respectively. The maximum strain is approximately 39% (nanochains) and 25.2% (nanomaile), and these deformations are completely reversible
Competing, Coverage-Dependent Decomposition Pathways for C_2H_y Species on Nickel (111)
Competing, coverage-dependent pathways for ethane (CH_3CH_3) decomposition on Ni(111) are proposed on the basis of quantum mechanics (QM) calculations, performed by using the PBE flavor of density functional theory (DFT), for all C_2H_y species adsorbed to a periodically infinite Ni(111) surface. For CH_2CH_3, CHCH_3, and CCH_3, we find that the surface C is tetrahedral in each case, with the surface C forming bonds to one, two, or three Ni atoms with bond energies scaling nearly linearly (E_(bond) = 32.5, 82.7, and 130.8 kcal/mol, respectively). In each of the remaining six C_2H_y species, both C atoms are able to form bonds to the surface. Three of these (CH_2CH_2, CHCH_2, and CCH_2) adsorb most favorably at a fcc-top site with the methylene C located at an on-top site and the other C at an adjacent fcc site. The bond energies for these species are E_(bond) = 19.7, 63.2, and 93.6 kcal/mol, respectively. The remaining species (CHCH, CCH, and C_2) all prefer binding at fcc-hcp sites, where the C atoms sit in a pair of adjacent fcc and hcp sites, with binding energies of E_(bond) = 57.7, 120.4, and 162.8 kcal/mol, respectively.
We find that CHCH_(ad) is the most stable surface species (ΔH_(eth) = −18.6), and an important intermediate along the lowest-energy decomposition pathway for ethane on Ni(111). The second most stable species, CCH_3, is a close competitor (ΔH_(eth) = −18.2 kcal/mol), lying along an alternative decomposition pathway that is preferred for high-surface-coverage conditions. The existence of these competing, low- and high-coverage decomposition pathways is consistent with the experiments.
The QM results reported here were used as training data in the development of the ReaxFF reactive force field describing hydrocarbon reactions on nickel surfaces [Mueller, J. E.; van Duin, A: C. T.; Goddard, W. A. J. Phys. Chem. C 2010, 114, 4939−4949]. This has enabled Reactive dynamics studying the chemisorption and decomposition of systems far too complex for quantum mechanics. Thus we reported recently, the chemisorption and decomposition of six different hydrocarbon species on a Ni_(468) nanoparticle catalysts using this ReaxFF description [Mueller, J. E.; van Duin, A: C. T.; Goddard, W. A. J. Phys. Chem. C 2010, 114, 5675−5685]
Development of Interatomic ReaxFF Potentials for Au-S-C-H Systems
We present fully reactive interatomic potentials
for systems containing gold, sulfur, carbon, and hydrogen,
employing the ReaxFF formalism. The potential is designed
especially for simulating goldthiol systems and has been used for studying cluster deposition on self-assembled monolayers. Additionally, a large number of density functional theory calculations are reported, including molecules containing the aforementioned elements and adsorption energetics of molecules and atoms on gold
Multiparadigm modeling of dynamical crack propagation in silicon using a reactive force field
We report a study of dynamic cracking in a silicon single crystal in which the ReaxFF reactive force field is used for several thousand atoms near the crack tip, while more than 100 000 atoms are described with a nonreactive force field. ReaxFF is completely derived from quantum mechanical calculations of simple silicon systems without any empirical parameters. Our results reproduce experimental observations of fracture in silicon including changes in crack dynamics for different crack orientations
Initiation mechanisms and kinetics of pyrolysis and combustion of JP-10 hydrocarbon jet fuel
In order to investigate the initiation mechanisms and kinetics associated with the pyrolysis of JP-10 (exo-tricyclo[5.2.1.0^2,6]decane), a single-component hydrocarbon jet fuel, we carried out molecular dynamics (MD) simulations employing the ReaxFF reactive force field. We found that the primary decomposition reactions involve either (1) dissociation of ethylene from JP-10, resulting in the formation of a C8 hydrocarbon intermediate, or (2) the production of two C5 hydrocarbons. ReaxFF MD leads to good agreement with experiment for the product distribution as a function of temperature. On the basis of the rate of consumption of JP-10, we calculate an activation energy of 58.4 kcal/mol for the thermal decomposition of this material, which is consistent with a strain-facilitated C−C bond cleavage mechanism in JP-10. This compares well with the experimental value of 62.4 kcal/mol. In addition, we carried out ReaxFF MD studies of the reactive events responsible for oxidation of JP-10. Here we found overall agreement between the thermodynamic energies obtained from ReaxFF and quantum-mechanical calculations, illustrating the usefulness of ReaxFF for studying oxidation of hydrocarbons. The agreement of these results with available experimental observations demonstrates that ReaxFF can provide useful insights into the complicated thermal decomposition and oxidation processes of important hydrocarbon fuels
Simulating the Initial Stage of Phenolic Resin Carbonization via the ReaxFF Reactive Force Field
Pyrolysis of phenolic resins leads to carbon formation. Simulating this resin-to-carbon process atomistically is a daunting task. In this paper, we attempt to model the initial stage of this process by using the ReaxFF reactive force field, which bridges quantum mechanical and molecular mechanical methods. We run molecular dynamics simulations to examine the evolution of small molecules at different temperatures. The main small-molecule products found include H_2O, H_2, CO, and C_2H_2. We find multiple pathways leading to H_2O formation, including a frequent channel via β-H elimination, which has not been proposed before. We determine the reaction barrier for H_2O formation from the reaction rates obtained at different temperatures. We also discuss the relevance of our simulations to previous experimental observations. This work represents a first attempt to model the resin-to-carbon process atomistically
- …