15,309 research outputs found

    Virtual RTCP: A Case Study of Monitoring and Repair for UDP-based IPTV Systems

    Get PDF
    IPTV systems have seen widespread deployment, but often lack robust mechanisms for monitoring the quality of experience. This makes it difficult for network operators to ensure that their services match the quality of traditional broadcast TV systems, leading to consumer dissatisfaction. We present a case study of virtual RTCP, a new framework for reception quality monitoring and reporting for UDP-encapsulated MPEG video delivered over IP multicast. We show that this allows incremental deployment of reporting infrastructure, coupled with effective retransmission-based packet loss repair

    Infrared Spectra of Meteoritic SiC Grains

    Full text link
    We present here the first infrared spectra of meteoritic SiC grains. The mid-infrared transmission spectra of meteoritic SiC grains isolated from the Murchison meteorite were measured in the wavelength range 2.5--16.5 micron, in order to make available the optical properties of presolar SiC grains. These grains are most likely stellar condensates with an origin predominately in carbon stars. Measurements were performed on two different extractions of presolar SiC from the Murchison meteorite. The two samples show very different spectral appearance due to different grain size distributions. The spectral feature of the smaller meteoritic SiC grains is a relatively broad absorption band found between the longitudinal and transverse lattice vibration modes around 11.3 micron, supporting the current interpretation about the presence of SiC grains in carbon stars. In contrast to this, the spectral feature of the large (> 5 micron) grains has an extinction minimum around 10 micron. The obtained spectra are compared with commercially available SiC grains and the differences are discussed. This comparison shows that the crystal structure (e.g., beta-SiC versus alpha-SiC) of SiC grains plays a minor role on the optical signature of SiC grains compared to e.g. grain size.Comment: 7 pages, 6 figures. To appear in A&

    Abundant Methanol Masers but no New Evidence for Star Formation in GCM0.253+0.016

    Full text link
    We present new observations of the quiescent giant molecular cloud GCM0.253+0.016 in the Galactic center, using the upgraded Karl G. Jansky Very Large Array. Observations were made at wavelengths near 1 cm, at K (24 to 26 GHz) and Ka (27 and 36 GHz) bands, with velocity resolutions of 1-3 km/s and spatial resolutions of ~0.1 pc, at the assumed 8.4 kpc distance of this cloud. The continuum observations of this cloud are the most sensitive yet made, and reveal previously undetected emission which we attribute primarily to free-free emission from external ionization of the cloud. In addition to the sensitive continuum map, we produce maps of 12 molecular lines: 8 transitions of NH3 -- (1,1),(2,2),(3,3),(4,4),(5,5),(6,6),(7,7) and (9,9), as well as the HC3N (3-2) and (4-3) lines, and CH3OH 4(-1) - 3(0) the latter of which is known to be a collisionally-excited maser. We identify 148 CH3OH 4(-1) - 3(0) (36.2 GHz) sources, of which 68 have brightness temperatures in excess of the highest temperature measured for this cloud (400 K) and can be confirmed to be masers. The majority of these masers are concentrated in the southernmost part of the cloud. We find that neither these masers nor the continuum emission in this cloud provide strong evidence for ongoing star formation in excess of that previously inferred by the presence of an H2O maser.Comment: 33 pages, 4 tables, 9 figures; ApJ Accepte

    A Black Hole in the Galactic Center Complex IRS 13E?

    Full text link
    The IRS 13E complex is an unusual concentration of massive, early-type stars at a projected distance of ~0.13 pc from the Milky Way's central supermassive black hole Sagittarius A* (Sgr A*). Because of their similar proper motion and their common nature as massive, young stars it has recently been suggested that IRS 13E may be the remnant of a massive stellar cluster containing an intermediate-mass black hole (IMBH) that binds its members gravitationally in the tidal field of Sgr A*. Here, we present an analysis of the proper motions in the IRS~13E environment that combines the currently best available data with a time line of 10 years. We find that an IMBH in IRS 13E must have a minimum mass of ~10^4 solar masses in order to bind the source complex gravitationally. This high mass limit in combination with the absence so far of compelling evidence for a non-thermal radio and X-ray source in IRS 13E make it appear unlikely that an IMBH exists in IRS 13E that is sufficiently massive to bind the system gravitationally.Comment: accepted by AP

    Neutrino Signatures and the Neutrino-Driven Wind in Binary Neutron Star Mergers

    Get PDF
    We present VULCAN/2D multigroup flux-limited-diffusion radiation-hydrodynamics simulations of binary neutron star mergers, using the Shen equation of state, covering ≳ 100 ms, and starting from azimuthal-averaged two-dimensional slices obtained from three-dimensional smooth-particle-hydrodynamics simulations of Rosswog & Price for 1.4M☉ (baryonic) neutron stars with no initial spins, co-rotating spins, or counter-rotating spins. Snapshots are post-processed at 10 ms intervals with a multiangle neutrino-transport solver. We find polar-enhanced neutrino luminosities, dominated by ¯νe and “νμ” neutrinos at the peak, although νe emission may be stronger at late times. We obtain typical peak neutrino energies for νe, ¯νe, and “νμ” of ∼12, ∼16, and ∼22 MeV, respectively. The supermassive neutron star (SMNS) formed from the merger has a cooling timescale of ≾ 1 s. Charge-current neutrino reactions lead to the formation of a thermally driven bipolar wind with (M·) ∼ 10^−3 M☉ s^−1 and baryon-loading in the polar regions, preventing any production of a γ-ray burst prior to black hole formation. The large budget of rotational free energy suggests that magneto-rotational effects could produce a much-greater polar mass loss. We estimate that ≾ 10^−4 M☉ of material with an electron fraction in the range 0.1–0.2 becomes unbound during this SMNS phase as a result of neutrino heating. We present a new formalism to compute the νi ¯νi annihilation rate based on moments of the neutrino-specific intensity computed with our multiangle solver. Cumulative annihilation rates, which decay as ∼t^−1.8, decrease over our 100 ms window from a few ×1050 to ∼ 1049 erg s−1, equivalent to a few ×10^54 to ∼10^53 e−e+ pairs per second

    Quantum chaos of a mixed, open system of kicked cold atoms

    Full text link
    The quantum and classical dynamics of particles kicked by a gaussian attractive potential are studied. Classically, it is an open mixed system (the motion in some parts of the phase space is chaotic, and in some parts it is regular). The fidelity (Lochshmidt echo) is found to exhibit oscillations that can be determined from classical considerations but are sensitive to phase space structures that are smaller than Planck's constant. Families of quasi-energies are determined from classical phase space structures. Substantial differences between the classical and quantum dynamics are found for time dependent scattering. It is argued that the system can be experimentally realized by cold atoms kicked by a gaussian light beam.Comment: 19 pages, 21 figures, (accepted for publication in Phys. Rev. E
    corecore