53,738 research outputs found

    Six-qubit permutation-based decoherence-free orthogonal basis

    Get PDF
    There is a natural orthogonal basis of the 6-qubit decoherence-free (DF) space robust against collective noise. Interestingly, most of the basis states can be obtained from one another just permuting qubits. This property: (a) is useful for encoding qubits in DF subspaces, (b) allows the implementation of the Bennett-Brassard 1984 (BB84) protocol in DF subspaces just permuting qubits, which completes a the method for quantum key distribution using DF states proposed by Boileau et al. [Phys. Rev. Lett. 92, 017901 (2004)], and (c) points out that there is only one 6-qubit DF state which is essentially new (not obtained by permutations) and therefore constitutes an interesting experimental challenge.Comment: REVTeX4, 5 page

    Glueball Spin

    Get PDF
    The spin of a glueball is usually taken as coming from the spin (and possibly the orbital angular momentum) of its constituent gluons. In light of the difficulties in accounting for the spin of the proton from its constituent quarks, the spin of glueballs is reexamined. The starting point is the fundamental QCD field angular momentum operator written in terms of the chromoelectric and chromomagnetic fields. First, we look at the restrictions placed on the structure of glueballs from the requirement that the QCD field angular momentum operator should satisfy the standard commutation relationships. This can be compared to the electromagnetic charge/monopole system, where the quantization of the field angular momentum places restrictions (i.e. the Dirac condition) on the system. Second, we look at the expectation value of this operator under some simplifying assumptions.Comment: 11 pages, 0 figures; added references and some discussio

    Solution of the off-forward leading logarithmic evolution equation based on the Gegenbauer moments inversion

    Full text link
    Using the conformal invariance the leading-log evolution of the off-forward structure function is reduced to the forward evolution described by the conventional DGLAP equation. The method relies on the fact that the anomalous dimensions of the Gegenbauer moments of the off-forward distribution are independent on the asymmetry, or skewedness, parameter and equal to the DGLAP ones. The integral kernels relating the forward and off-forward functions with the same Mellin and Gegenbauer moments are presented for arbitrary asymmetry value.Comment: 11 pages, LaTeX, no figures, revised version, references adde

    Heisenberg-picture approach to the exact quantum motion of a time-dependent forced harmonic oscillator

    Get PDF
    In the Heisenberg picture, the generalized invariant and exact quantum motions are found for a time-dependent forced harmonic oscillator. We find the eigenstate and the coherent state of the invariant and show that the dispersions of these quantum states do not depend on the external force. Our formalism is applied to several interesting cases.Comment: 15 pages, two eps files, to appear in Phys. Rev. A 53 (6) (1996

    Chiral-Odd and Spin-Dependent Quark Fragmentation Functions and their Applications

    Full text link
    We define a number of quark fragmentation functions for spin-0, -1/2 and -1 hadrons, and classify them according to their twist, spin and chirality. As an example of their applications, we use them to analyze semi-inclusive deep-inelastic scattering on a transversely polarized nucleon.Comment: 19 pages in Plain TeX, MIT CTP #221

    Disentangling positivity constraints for generalized parton distributions

    Full text link
    Positivity constraints are derived for the generalized parton distributions (GPDs) of spin-1/2 hadrons. The analysis covers the full set of eight twist-2 GPDs. Several new inequalities are obtained which constrain GPDs by various combinations of usual (forward) unpolarized and polarized parton distributions including the transversity distribution.Comment: 9 pages (REVTEX), typos correcte

    Leading Chiral Contributions to the Spin Structure of the Proton

    Get PDF
    The leading chiral contributions to the quark and gluon components of the proton spin are calculated using heavy-baryon chiral perturbation theory. Similar calculations are done for the moments of the generalized parton distributions relevant to the quark and gluon angular momentum densities. These results provide useful insight about the role of pions in the spin structure of the nucleon, and can serve as a guidance for extrapolating lattice QCD calculations at large quark masses to the chiral limit.Comment: 8 pages, 2 figures; a typo in Ref. 7 correcte

    Ground state of spin-1 Bose-Einstein condensates with spin-orbit coupling in a Zeeman field

    Full text link
    We systematically investigate the weakly trapped spin-1 Bose-Einstein condensates with spin-orbit coupling in an external Zeeman field. We find that the mean-field ground state favors either a magnetized standing wave phase or plane wave phase when the strength of Zeeman field is below a critical value related to the strength of spin-orbit coupling. Zeeman field can induce the phase transition between standing wave and plane wave phases, and we determine the phase boundary analytically and numerically. The magnetization of these two phases responds to the external magnetic field in a very unique manner, the linear Zeeman effect magnetizes the standing wave phase along the direction of the magnetic field, but the quadratic one demagnetizes the plane wave phase. When the strength of Zeeman field surpasses the critical value, the system is completely polarized to a ferromagnetic state or polar state with zero momentum
    • …
    corecore