4,651 research outputs found

    Multi-channel GaAs-based planar gunn diodes

    Get PDF
    We present a multi-channel GaAs-based planar Gunn diode. By introducing extra channels, the output RF power has been significantly improved compared to single-channel GaAsbased planar Gunn diodes. For a 1.14 ÎĽm length and 60 ÎĽm wide device, the highest power achieved was approximately -4 dBm operating in fundamental mode at 109 GHz, and -26.6 dBm at its second-harmonic at 218 GHz

    A wideband CPW ring power combiner with low insertion loss and high port isolation

    Get PDF
    In this paper we present a coplanar waveguide (CPW)-based ring power combiner that exhibits less than 0.8 dB insertion loss, better than 15 dB port match and higher than 22 dB isolation loss over the frequency range from 50 GHz to 100 GHz. Compared with the conventional 2-way Wilkinson combiner, the proposed ring power combiner replaces the resistor between the two input ports with two quasi quarter-wave CPWs, a 180Âş CPW phase inverter, and two resistors that lead to frequency-insensitive port isolation and wideband port match. The power combiner is realized using an electron beam-based GaAs MMIC process along with simple electron beam airbridge technology. These results agree well with 3D full-wave simulations

    Filamentation Instability of Interacting Current Sheets in Striped Relativistic Winds: The Origin of Low Sigma?

    Full text link
    I outline a mechanism, akin to Weibel instabilities of interpenetrating beams, in which the neighboring current sheets in a striped wind from an oblique rotator interact through a two stream-like mechanism (a Weibel instability in flatland), to create an anomalous resistivity that heats the sheets and causes the magnetic field to diffusively annihilate in the wind upstream of the termination shock. The heating has consequences for observable unpulsed emission from pulsars.Comment: 7 pages, 9 figures. To be published in the proceedings of ``40 Years of Pulsars'

    Theory of Pulsar Wind Nebulae

    Full text link
    Our understanding of Pulsar Wind Nebulae (PWNe), has greatly improved in the last years thanks to unprecedented high resolution images taken from the HUBBLE, CHANDRA and XMM satellites. The discovery of complex but similar inner features, with the presence of unexpected axisymmetric rings and jets, has prompted a new investigation into the dynamics of the interaction of the pulsar winds with the surrounding SNR, which, thanks to the improvement in the computational resources, has let to a better understanding of the properties of these objects. On the other hand the discovery of non-thermal emission from bow shock PWNe, and of systems with a complex interaction between pulsar and SNR, has led to the development of more reliable evolutionary models. I will review the standard theory of PWNe, their evolution, and the current status in the modeling of their emission properties, in particular I will show that our evolutionary models are able to describe the observations, and that the X-ray emission can now be reproduced with sufficient accuracy, to the point that we can use these nebulae to investigate fundamental issues as the properties of relativistic outflows and particle acceleration.Comment: 9 page, 5 figures, Proceeding of the conference "40 Years of Pulsars", 12-17 August 2007, Montreal, Canada. (figures are not properly displayed in .ps or .pdf version please download archive for them

    3^3He Transport in the Sun and the Solar Neutrino Problem

    Get PDF
    Recent solar neutrino experiments have shown that both Ď•(8\phi(^8B) and the neutrino flux ratio Ď•(7\phi(^7Be)/Ď•(8\phi(^8B) are substantially below their standard solar model values, leading some to discount the possibility of an astrophysical solution to the solar neutrino puzzle. We test this conclusion phenomenologically and find that the discrepancies can be significantly reduced by a distinctive pattern of core mixing on timescales characteristic of 3^3He equilibration

    Twenty Years of Searching for (and Finding) Globular Cluster Pulsars

    Full text link
    Globular clusters produce orders of magnitude more millisecond pulsars per unit mass than the Galactic disk. Since the first cluster pulsar was uncovered twenty years ago, at least 138 have been identified - most of which are binary millisecond pulsars. Because of their origins involving stellar encounters, many of these systems are exotic objects that would never be observed in the Galactic disk. Examples include pulsar-main sequence binaries, extremely rapid rotators (including the current record holder), and millisecond pulsars in highly eccentric orbits. These systems are allowing new probes of the interstellar medium, the equation of state of material at supra-nuclear density, the mass distribution of neutron stars, and the dynamics of globular clusters.Comment: 9 pages, 6 figures. Submitted review for the "40 Years of Pulsars" conference in Montreal, Aug 2007. To be published by the AI

    The Parkes Pulsar Timing Array

    Full text link
    Detection and study of gravitational waves from astrophysical sources is a major goal of current astrophysics. Ground-based laser-interferometer systems such as LIGO and VIRGO are sensitive to gravitational waves with frequencies of order 100 Hz, whereas space-based systems such as LISA are sensitive in the millihertz regime. Precise timing observations of a sample of millisecond pulsars widely distributed on the sky have the potential to detect gravitational waves at nanohertz frequencies. Potential sources of such waves include binary super-massive black holes in the cores of galaxies, relic radiation from the inflationary era and oscillations of cosmic strings. The Parkes Pulsar Timing Array (PPTA) is an implementation of such a system in which 20 millisecond pulsars have been observed using the Parkes radio telescope at three frequencies at intervals of two -- three weeks for more than two years. Analysis of these data has been used to limit the gravitational wave background in our Galaxy and to constrain some models for its generation. The data have also been used to investigate fluctuations in the interstellar and Solar-wind electron density and have the potential to investigate the stability of terrestrial time standards and the accuracy of solar-system ephemerides.Comment: 9 pages, 6 figures, Proceedings of "40 Years of Pulsars: Millisecond Pulsars, Magnetars and More", Montreal, August 2007. Corrected SKA detection limi

    Constraining the neutron star equation of state using quiescent low-mass X-ray binaries

    Full text link
    Chandra or XMM-Newton observations of quiescent low-mass X-ray binaries can provide important constraints on the equation of state of neutron stars. The mass and radius of the neutron star can potentially be determined from fitting a neutron star atmosphere model to the observed X-ray spectrum. For a radius measurement it is of critical importance that the distance to the source is well constrained since the fractional uncertainty in the radius is at least as large as the fractional uncertainty in the distance. Uncertainties in modelling the neutron star atmosphere remain. At this stage it is not yet clear if the soft thermal component in the spectra of many quiescent X-ray binaries is variable on timescales too short to be accommodated by the cooling neutron star scenario. This can be tested with a long XMM-Newton observation of the neutron star X-ray transient CenX-4 in quiescence. With such an observation one can use the Reflection Grating Spectrometer spectrum to constrain the interstellar extinction to the source. This removes this parameter from the X-ray spectral fitting of the EPIC pn and MOS spectra and allows one to investigate whether the variability observed in the quiescent X-ray spectrum of this source is due to variations in the soft thermal spectral component or variations in the power law spectral component coupled with variations in N_H. This will test whether the soft thermal component can indeed be due to the hot thermal glow of the neutron star. Irrespective of the outcome of such a study, the observed cooling in quiescence in sources for which the crust is significantly out of thermal equilibrium with the core due to a prolonged outburst, such as KS 1731-260, seem excellent candidates for mass and radius determinations through modelling the observed X-rays with a neutron star atmosphere model.Comment: 7 pages, 3 figures, proceedings "40 years of pulsars" conferenc
    • …
    corecore