44 research outputs found
Effects of relative phase and interactions on atom-laser outcoupling from a double-well Bose-Einstein condensate: Markovian and non-Markovian dynamics
We investigate aspects of the dynamics of a continuous atom-laser scheme
based on the merging of independently formed atomic condensates. Our
theoretical analysis covers the Markovian as well as the non-Markovian
operational regimes, and is based on a semiclassical (mean-field) two-mode
model. The role of the relative phase between the two condensates and the
effect of interatomic interactions on the evolution of the trapped populations
and the distribution of outcoupled atoms are discussed.Comment: to appear in J. Phys.
Observation of Superfluid Flow in a Bose-Einstein Condensed Gas
We have studied the hydrodynamic flow in a Bose-Einstein condensate stirred
by a macroscopic object, a blue detuned laser beam, using nondestructive {\em
in situ} phase contrast imaging. A critical velocity for the onset of a
pressure gradient has been observed, and shown to be density dependent. The
technique has been compared to a calorimetric method used previously to measure
the heating induced by the motion of the laser beam.Comment: 4 pages, 5 figure
Enhancement and suppression of spontaneous emission and light scattering by quantum degeneracy
Quantum degeneracy modifies light scattering and spontaneous emission. For
fermions, Pauli blocking leads to a suppression of both processes. In contrast,
in a weakly interacting Bose-Einstein condensate, we find spontaneous emission
to be enhanced, while light scattering is suppressed. This difference is
attributed to many-body effects and quantum interference in a Bose-Einstein
condensate.Comment: 4 pages 1 figur
Transport of Bose-Einstein Condensates with Optical Tweezers
We have transported gaseous Bose-Einstein condensates over distances up to 44
cm. This was accomplished by trapping the condensate in the focus of an
infrared laser and translating the location of the laser focus with controlled
acceleration. Condensates of order 1 million atoms were moved into an auxiliary
chamber and loaded into a magnetic trap formed by a Z-shaped wire. This
transport technique avoids the optical and mechanical access constraints of
conventional condensate experiments and creates many new scientific
opportunities.Comment: 5 pages, 3 figure
Generation of macroscopic pair-correlated atomic beams by four-wave mixing in Bose-Einstein condensates
By colliding two Bose-Einstein condensates we have observed strong bosonic
stimulation of the elastic scattering process. When a weak input beam was
applied as a seed, it was amplified by a factor of 20. This large gain atomic
four-wave mixing resulted in the generation of two macroscopically occupied
pair-correlated atomic beams.Comment: Please take eps files for best details in figure
Spectroscopic Temperature Determination of Degenerate Fermi Gases
We suggest a simple method for measuring the temperature of ultra-cold gases
made of fermions. We show that by using a two-photon Raman probe, it is
possible to obtain lineshapes which reveal properties of the degenerate sample,
notably its temperature . The proposed method could be used with identical
fermions in different hyperfine states interacting via s-wave scattering or
identical fermions in the same hyperfine state via p-wave scattering. We
illustrate the applicability of the method in realistic conditions for Li
prepared in two different hyperfine states. We find that temperatures down to
0.05 can be determined by this {\it in-situ} method.Comment: 7 pages, 4 figures, Revtex
Experimental observation of the Bogoliubov transformation for a Bose-Einstein condensed gas
Phonons with wavevector were optically imprinted into a
Bose-Einstein condensate. Their momentum distribution was analyzed using Bragg
spectroscopy with a high momentum transfer. The wavefunction of the phonons was
shown to be a superposition of +q and -q free particle momentum states, in
agreement with the Bogoliubov quasiparticle picture.Comment: 4 pages, 3 figures, please take postscript version for the best
version of Fig
Measuring the temporal coherence of an atom laser beam
We report on the measurement of the temporal coherence of an atom laser beam
extracted from a Rb Bose-Einstein condensate. Reflecting the beam from a
potential barrier creates a standing matter wave structure. From the contrast
of this interference pattern, observed by magnetic resonance imaging, we have
deduced an energy width of the atom laser beam which is Fourier limited by the
duration of output coupling. This gives an upper limit for temporal phase
fluctuations in the Bose-Einstein condensate.Comment: 4 pages, 3 figure
Exploring phase coherence in a 2D lattice of Bose-Einstein condensates
Bose-Einstein condensates of rubidium atoms are stored in a two-dimensional
periodic dipole force potential, formed by a pair of standing wave laser
fields. The resulting potential consists of a lattice of tightly confining
tubes, each filled with a 1D quantum gas. Tunnel-coupling between neighboring
tubes is controlled by the intensity of the laser fields. By observing the
interference pattern of atoms released from more than 3000 individual lattice
tubes the phase coherence of the coupled quantum gases is studied. The lifetime
of the condensate in the lattice and the dependence of the interference pattern
on the lattice configuration are investigated.Comment: 4 pages, 6 figure
Propagation of Bose-Einstein condensates in a magnetic waveguide
Gaseous Bose-Einstein condensates of 2-3 million atoms were loaded into a
microfabricated magnetic trap using optical tweezers. Subsequently, the
condensates were released into a magnetic waveguide and propagated 12 mm.
Single-mode propagation was observed along homogeneous segments of the
waveguide. Inhomogeneities in the guiding potential arose from geometric
deformations of the microfabricated wires and caused strong transverse
excitations. Such deformations may restrict the waveguide physics that can be
explored with propagating condensates.Comment: 5 pages, 4 figure