18,591 research outputs found

    Offset frequency dynamics and phase noise properties of a self-referenced 10 GHz Ti:sapphire frequency comb

    Full text link
    This paper shows the experimental details of the stabilization scheme that allows full control of the repetition rate and the carrier-envelope offset frequency of a 10 GHz frequency comb based on a femtosecond Ti:sapphire laser. Octave-spanning spectra are produced in nonlinear microstructured optical fiber, in spite of the reduced peak power associated with the 10 GHz repetition rate. Improved stability of the broadened spectrum is obtained by temperature-stabilization of the nonlinear optical fiber. The carrier-envelope offset frequency and the repetition rate are simultaneously frequency stabilized, and their short- and long-term stabilities are characterized. We also measure the transfer of amplitude noise of the pump source to phase noise on the offset frequency and verify an increased sensitivity of the offset frequency to pump power modulation compared to systems with lower repetition rate. Finally, we discuss merits of this 10 GHz system for the generation of low-phase-noise microwaves

    Enhancement of laser cooling by the use of magnetic gradients

    Full text link
    We present a laser cooling scheme for trapped ions and atoms using a combination of laser couplings and a magnetic gradient field. In a Schrieffer-Wolff transformed picture, this setup cancels the carrier and blue sideband terms completely resulting in an improved cooling behaviour compared to standard cooling schemes (e.g. sideband cooling) and allowing cooling to the vibrational ground state. A condition for optimal cooling rates is presented and the cooling behaviour for different Lamb-Dicke parameters and spontaneous decay rates is discussed. Cooling rates of one order of magnitude less than the trapping frequency are achieved using the new cooling method. Furthermore the scheme turns out to be robust under deviations from the optimal parameters and moreover provides good cooling rates also in the multi particle case.Comment: 14 pages, 8 figure

    Quantum Evolution of Inhomogeneities in Curved Space

    Get PDF
    We obtain the renormalized equations of motion for matter and semi-classical gravity in an inhomogeneous space-time. We use the functional Schrodinger picture and a simple Gaussian approximation to analyze the time evolution of the λϕ4\lambda\phi^4 model, and we establish the renormalizability of this non-perturbative approximation. We also show that the energy-momentum tensor in this approximation is finite once we consider the usual mass and coupling constant renormalizations, without the need of further geometrical counter-terms.Comment: 22 page

    Towards a precession driven dynamo experiment

    Full text link
    The most ambitious project within the DREsden Sodium facility for DYNamo and thermohydraulic studies (DRESDYN) at Helmholtz-Zentrum Dresden-Rossendorf (HZDR) is the set-up of a precession-driven dynamo experiment. After discussing the scientific background and some results of water pre-experiments and numerical predictions, we focus on the numerous structural and design problems of the machine. We also outline the progress of the building's construction, and the status of some other experiments that are planned in the framework of DRESDYN.Comment: 9 pages, 6 figures, submitted to Magnetohydrodynamic

    Optical diode based on the chirality of guided photons

    Get PDF
    Photons are nonchiral particles: their handedness can be both left and right. However, when light is transversely confined, it can locally exhibit a transverse spin whose orientation is fixed by the propagation direction of the photons. Confined photons thus have chiral character. Here, we employ this to demonstrate nonreciprocal transmission of light at the single-photon level through a silica nanofibre in two experimental schemes. We either use an ensemble of spin-polarised atoms that is weakly coupled to the nanofibre-guided mode or a single spin-polarised atom strongly coupled to the nanofibre via a whispering-gallery-mode resonator. We simultaneously achieve high optical isolation and high forward transmission. Both are controlled by the internal atomic state. The resulting optical diode is the first example of a new class of nonreciprocal nanophotonic devices which exploit the chirality of confined photons and which are, in principle, suitable for quantum information processing and future quantum optical networks

    Radion Potential and Brane Dynamics

    Get PDF
    We examine the cosmology of the Randall-Sundrum model in a dynamic setting where scalar fields are present in the bulk as well as the branes. This generates a mechanism similar to that of Goldberger-Wise for radion stabilization and the recovery of late-cosmology features in the branes. Due to the induced radion dynamics, the inflating branes roll towards the minimum of the radion potential, thereby exiting inflation and reheating the Universe. In the slow roll part of the potential, the 'TeV' branes have maximum inflation rate and energy as their coupling to the radion and bulk modes have minimum suppresion. Hence, when rolling down the steep end of the potential towards the stable point, the radion field (which appears as the inflaton of the effective 4D theory in the branes) decays very fast, reheats the Universe .This process results decayin a decrease of brane's canonical vacuum energy Λ4\Lambda_4. However, at the minimum of the potential Λ4\Lambda_4 is small but not neccessarily zero and the fine-tuning issue remains .Density perturbation constraints introduce an upper bound when the radion stabilizies. Due to the large radion mass and strong suppression to the bulk modes, moduli problems and bulk reheating do not occur. The reheat temperature and a sufficient number of e-folding constraints for the brane-universe are also satisfied. The model therefore recovers the radiation dominated FRW universe.Comment: 16 pages, 3 figures,extraneous sentences removed, 2 footnotes added, some typos correcte
    • 

    corecore