73,373 research outputs found
Thermal dependence of the zero-bias conductance through a nanostructure
We show that the conductance of a quantum wire side-coupled to a quantum dot,
with a gate potential favoring the formation of a dot magnetic moment, is a
universal function of the temperature. Universality prevails even if the
currents through the dot and the wire interfere. We apply this result to the
experimental data of Sato et al.[Phys. Rev. Lett. 95, 066801 (2005)].Comment: 6 pages, 3 figures. More detailed presentation, and updated
references. Final version
Equivalence between different classical treatments of the O(N) nonlinear sigma model and their functional Schrodinger equations
In this work we derive the Hamiltonian formalism of the O(N) non-linear sigma
model in its original version as a second-class constrained field theory and
then as a first-class constrained field theory. We treat the model as a
second-class constrained field theory by two different methods: the
unconstrained and the Dirac second-class formalisms. We show that the
Hamiltonians for all these versions of the model are equivalent. Then, for a
particular factor-ordering choice, we write the functional Schrodinger equation
for each derived Hamiltonian. We show that they are all identical which
justifies our factor-ordering choice and opens the way for a future
quantization of the model via the functional Schrodinger representation.Comment: Revtex version, 17 pages, substantial change
- …