1 research outputs found

    Efficient Dynamic Importance Sampling of Rare Events in One Dimension

    Get PDF
    Exploiting stochastic path integral theory, we obtain \emph{by simulation} substantial gains in efficiency for the computation of reaction rates in one-dimensional, bistable, overdamped stochastic systems. Using a well-defined measure of efficiency, we compare implementations of ``Dynamic Importance Sampling'' (DIMS) methods to unbiased simulation. The best DIMS algorithms are shown to increase efficiency by factors of approximately 20 for a 5kBT5 k_B T barrier height and 300 for 9kBT9 k_B T, compared to unbiased simulation. The gains result from close emulation of natural (unbiased), instanton-like crossing events with artificially decreased waiting times between events that are corrected for in rate calculations. The artificial crossing events are generated using the closed-form solution to the most probable crossing event described by the Onsager-Machlup action. While the best biasing methods require the second derivative of the potential (resulting from the ``Jacobian'' term in the action, which is discussed at length), algorithms employing solely the first derivative do nearly as well. We discuss the importance of one-dimensional models to larger systems, and suggest extensions to higher-dimensional systems.Comment: version to be published in Phys. Rev.
    corecore