1,597 research outputs found
Synchrotron and Synchrotron Self-Compton Spectral Signatures and Blazar Emission Models
We find that energy losses due to synchrotron self-Compton (SSC) emission in
blazar jets can produce distinctive signatures in the time-averaged synchrotron
and SSC spectra of these objects. For a fairly broad range of particle
injection distributions, SSC-loss dominated synchrotron emission exhibits a
spectral dependence . The presence or absence of this
dependence in the optical and ultraviolet spectra of flat spectrum radio
quasars such as 3C~279 and in the soft X-ray spectra of high frequency BL Lac
objects such as Mrk 501 gives a robust measure of the importance of SSC losses.
Furthermore, for partially cooled particle distributions, spectral breaks of
varying sizes can appear in the synchrotron and SSC spectra and will be related
to the spectral indices of the emission below the break. These spectral
signatures place constraints on the size scale and the non-thermal particle
content of the emitting plasma as well as the observer orientation relative to
the jet axis.Comment: 4 pages, 1 figure, LaTeX2e, emulateapj5.sty, accepted for publication
in Ap
Analyzing the Multiwavelength Spectrum and Variability of BL Lacertae During the July 1997 Outburst
The multiwavelength spectrum of BL Lacertae during its July 1997 outburst is
analyzed in terms of different variations of the homogeneous leptonic jet model
for the production of high-energy radiation from blazars. We find that a
two-component gamma-ray spectrum, consisting of a synchrotron self-Compton and
an external Compton component, is required in order to yield an acceptable fit
to the broadband spectrum. Our analysis indicates that in BL Lac, unlike other
BL Lac objects, the broad emission line region plays an important role for the
high-energy emission. Several alternative blazar jet models are briefly
discussed. In the appendix, we describe the formalism in which the process of
Comptonization of reprocessed accretion disk photons is treated in the
previously developed blazar jet simulation code which we use.Comment: Now accepted for publication in The Astronomical Journal.
Significantly extended discussion w.r.t. original version. 3 Figures included
using epsf.sty, rotate.st
Monte-Carlo simulations of thermal/nonthermal radiation from a neutron-star magnetospheric accretion shell
We discuss the space-and-time-dependent Monte Carlo code we have developed to
simulate the relativistic radiation output from compact astrophysical objects,
coupled to a Fokker-Planck code to determine the self-consistent lepton
populations. We have applied this code to model the emission from a magnetized
neutron star accretion shell near the Alfven radius, reprocessing the radiation
from the neutron sar surface. We explore the parameter space defined by the
accretion rate, stellar surface field and the level of wave turbulence in the
shell. Our results are relevant to the emission from atoll sources, soft-X-ray
transient X-ray binaries containing weakly magnetized neutron stars, and to
recently suggested models of accretion-powered emission from anomalous X-ray
pulsars.Comment: 24 pages, including 7 figures; uses epsf.sty. final version, accepted
for publication in ApJ. Extended introduction and discussio
The redshift-dependence of gamma-ray absorption in the environments of strong-line AGN
The case of gamma-ray absorption due to photon-photon pair production of jet
photons in the external photon environment like accretion disk and broad-line
region radiation field of gamma-ray loud active galactic nuclei (AGN) that
exhibit strong emission lines is considered. I demonstrate that this ''local
opacity'', if detected, will almost unavoidably be redshift-dependent in the
sub-TeV range. This introduces non-negligible biases, and complicates
approaches for studying the evolution of the extragalactic background light
with contemporary GeV instruments like e.g. the Gamma-ray Large Area Space
Telescope (GLAST), etc., where the gamma-ray horizon is probed by means of
statistical analysis of absorption features (e.g. Fazio-Stecker relation, etc.)
in AGN spectra at various redshifts. It particularly applies to strong-line
quasars where external photon fields are potentially involved in gamma-ray
production.Comment: 19 pages, 5 figures; accepted for publication in Ap
Transformation Properties of External Radiation Fields, Energy-Loss Rates and Scattered Spectra, and a Model for Blazar Variability
We treat transformation properties of external radiation fields in the proper
frame of a plasma moving with constant speed. The specific spectral energy
densities of external isotropic and accretion-disk radiation fields are derived
in the comoving frame of relativistic outflows, such as those thought to be
found near black-hole jet and gamma-ray burst sources. Nonthermal electrons and
positrons Compton-scatter this radiation field, and high-energy protons and
ions interact with this field through photomeson and photopair production. We
revisit the problem of the Compton-scattered spectrum associated with an
external accretion-disk radiation field, and clarify a past treatment by the
authors. Simple expressions for energy-loss rates and Thomson-scattered spectra
are given for ambient soft photon fields consisting either of a surrounding
external isotropic monochromatic radiation field, or of an azimuthally
symmetric, geometrically thin accretion-disk radiation field. A model for
blazar emission is presented that displays a characteristic spectral and
variability behavior due to the presence of a direct accretion-disk component.
The disk component and distinct flaring behavior can be bright enough to be
detected from flat spectrum radio quasars with {\it GLAST}. Spectral states of
blazars are characterized by the relative importance of the accretion-disk and
scattered radiation fields and, in the extended jet, by the accretion disk,
inner jet, and cosmic microwave background radiation fields.Comment: 43 pages, 12 figures, ApJ, in press; includes improvements in
response to referee report, added references, section of detectability with
GLAS
Multiwavelength Observations of GX 339-4 in 1996. II. Rapid X-ray Variability
As part of our multiwavelength campaign of GX 339-4 observations in 1996 we
present the rapid X-ray variability observed July 26 using the RXTE when the
source was in a hard state (= soft X-ray low state). We found that the source
was extremely variable, with many bright flares. The flares have relatively
symmetric time profiles. There are a few time intervals where the flux rises
steadily and then drops suddenly, sometimes to a level lower than the average
before the increase. Hardness ratios showed that the source was slightly softer
when the flux was brighter. The power density spectra (PDS) were also
complicated and we found that broken power laws do not provide adequate fits to
any of them. Instead a pair of zero-centered Lorentzians gives a good general
description of the shape of the PDS. We found several quasi-periodic
oscillations (QPO), including some that are harmonically spaced with the most
stable frequency at 0.35 Hz. While the overall rms variability of the source
was close to being constant throughout the observation (29% integrating between
0.01 and 50 Hz), there is a small but significant change in the PDS shape with
time. More importantly, we show that the soft 2-5 keV band is more variable
than the harder 5-10 and 10-40 keV bands, which is unusual for this source and
for other black hole candidates. Cross correlation functions (CCF) between
these bands show that the light curve for the 10-40 keV band lags that of the
2-5 keV band by 5 msec.Comment: Submitted to Astrophysical Journal. 20 pages. 8 figure
X-ray Flares from Markarian 501
Motivated by the recent finding of hierarchical X-ray flaring phenomenon in
Mrk 421, we conducted a systematic search for X-ray flares from Mrk 501,
another well-known TeV blazar, by making use of the rich {\em RXTE} archival
database. We detected flares over a wide range of timescales, from months down
to minutes, as in the case of Mrk 421. However, the flares do not seem to occur
nearly as frequently in Mrk 501 as in Mrk 421 on any of the timescales. The
flaring hierarchy also seems apparent in Mrk 501, suggesting that it might be
common among TeV blazars. The results seem to imply a scale-invariant physical
origin of the flares (large or small). The X-ray spectrum of the source shows a
general trend of hardening toward the peak of long-duration flares, with
indication of spectral hysteresis, which is often seen in TeV blazars. However,
the data are not of sufficient quality to allow us to draw definitive
conclusions about spectral variability associated with more rapid but weaker
flares. We critically examine a reported sub-hour X-ray flare from Mrk 501, in
light of intense background flaring activity at the time of the observation,
and concluded that the flare is likely an artifact. On the other hand, we did
identify a rapid X-ray flare that appears to be real. It lasted only for about
15 minutes, during which the flux of the source varied by about 30%.
Sub-structures are apparent in its profile, implying variabilities on even
shorter timescales. Such rapid variabilities of Mrk 501 place severe
constraints on the physical properties of the flaring region in the jet, which
have serious implications on the emission models proposed for TeV blazars.Comment: 23 pages, 11 figures, accepted for publication in Ap
The Energy Dependence of the Aperiodic Variability for Cygnus X-1, GX 339-4, GRS 1758-258, & 1E 1740.7-2942
Using the data from the Rossi X-ray Timing Explorer (RXTE), we report the
different energy dependence of the variability of the four persistent hard
X-ray sources in the low-hard state: Cygnus X-1, GX 339-4, GRS 1758-258 and 1E
1740.7-2942. Cygnus X-1 is found to have a flatter power density spectrum (PDS)
shape at higher energies. The other three sources have energy independent PDS
shapes. The energy dependence of the overall variability (the integrated rms
amplitude) varies from source to source and from observation to observation.
1E~1740.7-2942, for example, has a variability generally increasing with energy
while GX 339-4 has a decreasing variability. A general trend is found in the
four sources that the integrated rms amplitude anti-correlates with the X-ray
flux. We compare these distinct energy dependent behaviors with several
emission models. None of the models can fully explain all the features that we
have found.Comment: 18 pages, 6 figures. Accepted for publication in Ap
The synchrotron peak shift during high-energy flares of blazars
A prediction for the energy shift of the synchrotron spectrum of
flat-spectrum radio quasars (FSRQs) during high-energy flares is presented. If
the -ray emission of FSRQs is produced by Comptonization of external
radiation, then the peak of the synchrotron spectrum is predicted to move to
lower energies in the flare state. This is opposite to the well-known broadband
spectral behavior of high-frequency peaked BL-Lac objects where the external
radiation field is believed to be weak and synchrotron-self Compton scattering
might be the dominant -ray radiation mechanism. The synchrotron peak
shift, if observed in FSRQs, can thus be used as a diagnostic to determine the
dominant radiation mechanism in these objects. I suggest a few FSRQs as
promising candidates to test the prediction of the external-Comptonization
model.Comment: 9 pages, including 2 figures; uses epsf.sty, rotate.sty; accepted for
ApJ Letters; minor revision
X-ray Spectral Signatures of the Photon Bubble Model for Ultraluminous X-ray Sources
The nature of ultraluminous X-ray sources in nearby galaxies is one of the
major open questions in modern X-ray astrophysics. One possible explanation for
these objects is an inhomogeneous, radiation dominated accretion disk around a
black hole -- the so-called ``photon bubble'' model. While
previous studies of this model have focused primarily on its
radiation-hydrodynamics aspects, in this paper, we provide an analysis of its
X-ray spectral (continuum and possible edge and line) characteristics. Compton
reflection between high and low density regions in the disk may provide the key
to distinguishing this model from others, such as accretion onto an
intermediate mass black hole. We couple a Monte Carlo/Fokker-Planck radiation
transport code with the XSTAR code for reflection to simulate the photon
spectra produced in a photon bubble model for ULXs. We find that reflection
components tend to be very weak and in most cases not observable, and make
predictions for the shape of the high-energy Comptonizing spectra. In many
cases the Comptonization dominates the spectra even down to a few keV.
In one simulation, a \sim 9 \kev feature was found, which may be considered a
signature of photon bubbles in ULXs; furthermore, we make predictions of high
energy power-laws which may be observed by future instruments.Comment: Accepted for publication in the Astrophysical Journa
- âŠ