101 research outputs found

    Factorization effects in a model of unstable particles

    Full text link
    The effects of factorization are considered within the framework of the model of unstable particles with a smeared mass. It is shown that two-particle cross section and three-particle decay width can be described by the universal factorized formulae for an unstable particles of an arbitrary spin in an intermediate state. The exact factorization is caused by the specific structure of the model unstable-particle propagators. This result is generalized to complicated scattering and decay-chain processes with unstable particles in intermediate states. We analyze applicability of the method and evaluate its accuracy.Comment: 13 pages, 7 figure

    N=4 supersymmetric mechanics with nonlinear chiral supermultiplet

    Full text link
    We construct N=4 supersymmetric mechanics using the N=4 nonlinear chiral supermultiplet. The two bosonic degrees of freedom of this supermultiplet parameterize the sphere S(2) and go into the bosonic components of the standard chiral multiplet when the radius of the sphere goes to infinity. We construct the most general action and demonstrate that the nonlinearity of the supermultiplet results in the deformation of the connection, which couples the fermionic degrees of freedom with the background, and of the bosonic potential. Also a non-zero magnetic field could appear in the system.Comment: 5 page

    Generalized N = 2 Super Landau Models

    Full text link
    We generalize previous results for the superplane Landau model to exhibit an explicit worldline N = 2 supersymmetry for an arbitrary magnetic field on any two-dimensional manifold. Starting from an off-shell N = 2 superfield formalism, we discuss the quantization procedure in the general case characterized by two independent potentials on the manifold and show that the relevant Hamiltonians are factorizable. In the restricted case when both the Gauss curvature and the magnetic field are constant over the manifold and, as a consequence, the underlying potentials are related, the Hamiltonians admit infinite series of factorization chains implying the integrability of the associated systems. We explicitly determine the spectrum and eigenvectors for the particular model with CP^1 as the bosonic manifold.Comment: 26 page

    Diagonalization of the neutralino mass matrix and boson-neutralino interaction

    Full text link
    We analyze a connection between neutralino mass sign, parity and structure of the neutralino-boson interaction. Correct calculation of spin-dependent and spin-independent contributions to neutralino-nuclear scattering should consider this connection. A convenient diagonalization procedure, based on the exponetial parametrization of unitary matrix, is suggested.Comment: 21 pages, RevTex

    Supersymmetric Quantum Hall Liquid with a Deformed Supersymmetry

    Full text link
    We construct a supersymmetric quantum Hall liquid with a deformed supersymmetry. One parameter is introduced in the supersymmetric Laughlin wavefunction to realize the original Laughlin wavefunction and the Moore-Read wavefunction in two extremal limits of the parameter. The introduced parameter corresponds to the coherence factor in the BCS theory. It is pointed out that the parameter-dependent supersymmetric Laughlin wavefunction enjoys a deformed supersymmetry. Based on the deformed supersymmetry, we construct a pseudo-potential Hamiltonian whose groundstate is exactly the parameter-dependent supersymmetric Laughlin wavefunction. Though the SUSY pseudo-potential Hamiltonian is parameter-dependent and non-Hermitian, its eigenvalues are parameter-independent and real.Comment: 14 pages, contribution to the proceedings of the Group 27 conference, Yerevan, Armenia, August 13-19, 2008, published versio

    Strong Couplings of Heavy Mesons to A Light Vector Meson in QCD

    Get PDF
    We make a detailed analysis of the BBρ(DDρ)BB\rho(DD\rho) and BBρ(DDρ)B^*B\rho(D^{*}D\rho) strong couplings gBBρ(gDDρ)g_{BB\rho}(g_{DD\rho}) and gBBρ(gDDρ)g_{B^*B\rho}(g_{D^{*}D\rho}) using QCD light cone sum rules(LCSR). The existing some negligence is pointed out in the previous LCSR calculation on gBBρ(gDDρg_{B^*B\rho} (g_{D^{\ast}D\rho}) and an updated estimate is presented. Our findings can be used to understand the behavior of the B,DρB,D \to \rho semileptonic form factors at large momentum transitions.Comment: 15 pages, latex, 2 figures, version appearing in PRD, typos correcte
    corecore